
Doctrine DBAL Documentation
Release 2.1.0

Roman Borschel, Guilherme Blanco, Benjamin Eberlei, Jonathan Wage

June 17, 2015

Contents

1 Introduction 3

2 Architecture 5
2.1 Drivers . 5
2.2 Platforms . 5
2.3 Logging . 6
2.4 Schema . 6
2.5 Types . 6

3 Configuration 7
3.1 Getting a Connection . 7

4 Data Retrieval And Manipulation 15
4.1 Data Retrieval . 15
4.2 Binding Types . 17
4.3 API . 19

5 SQL Query Builder 23
5.1 Security: Safely preventing SQL Injection . 23
5.2 Building a Query . 24
5.3 Building Expressions . 27
5.4 Binding Parameters to Placeholders . 28

6 Transactions 29
6.1 Transaction Nesting . 29
6.2 Auto-commit mode . 31

7 Platforms 33
7.1 MySQL . 33
7.2 Oracle . 33
7.3 Microsoft SQL Server . 33
7.4 PostgreSQL . 34
7.5 SAP Sybase SQL Anywhere . 34
7.6 SQLite . 34
7.7 Drizzle . 34

8 Types 35
8.1 Reference . 35
8.2 Mapping Matrix . 40

i

8.3 Detection of Database Types . 44
8.4 Custom Mapping Types . 44

9 Schema-Manager 47
9.1 listDatabases() . 47
9.2 listSequences() . 47
9.3 listTableColumns() . 48
9.4 listTableDetails() . 48
9.5 listTableForeignKeys() . 48
9.6 listTableIndexes() . 48
9.7 listTables() . 49
9.8 listViews() . 49
9.9 createSchema() . 49

10 Schema-Representation 51
10.1 Schema Assets . 52

11 Events 55
11.1 PostConnect Event . 55

12 Security 57
12.1 SQL Injection: Safe and Unsafe APIs for User Input . 57
12.2 User input in your queries . 58
12.3 Non-ASCII compatible Charsets in MySQL . 59

13 Sharding 61
13.1 ID Generation . 62
13.2 Transactions . 63
13.3 Foreign Keys . 64
13.4 Complex Queries . 64
13.5 ShardManager Interface . 64
13.6 Schema Operations: SchemaSynchronizer Interface . 65
13.7 SQL Azure Federations . 65
13.8 Generic SQL Sharding Support . 67

14 SQLAzure Sharding Tutorial 69
14.1 Install Doctrine . 69
14.2 Setup Connection . 69
14.3 Create Database . 70
14.4 Create Schema . 70
14.5 View Federation Members . 71
14.6 Insert Data . 71
14.7 Split Federation . 74
14.8 Inserting Data after Split . 74
14.9 Querying data with filtering off . 75
14.10 Querying data with filtering on . 75

15 Supporting Other Databases 77
15.1 Implementation Steps in Detail . 77

16 Portability 79
16.1 Connection Wrapper . 79
16.2 Database Platform . 80
16.3 Keyword Lists . 80

ii

17 Caching 81

18 Known Vendor Issues 83
18.1 PostgreSQL . 83
18.2 MySQL . 84
18.3 Sqlite . 84
18.4 IBM DB2 . 84
18.5 Oracle . 84
18.6 Microsoft SQL Server . 85

19 Indices and tables 87

iii

iv

Doctrine DBAL Documentation, Release 2.1.0

Contents:

Contents 1

Doctrine DBAL Documentation, Release 2.1.0

2 Contents

CHAPTER 1

Introduction

The Doctrine database abstraction & access layer (DBAL) offers a lightweight and thin runtime layer around a PDO-
like API and a lot of additional, horizontal features like database schema introspection and manipulation through an
OO API.

The fact that the Doctrine DBAL abstracts the concrete PDO API away through the use of interfaces that closely
resemble the existing PDO API makes it possible to implement custom drivers that may use existing native or self-
made APIs. For example, the DBAL ships with a driver for Oracle databases that uses the oci8 extension under the
hood.

The following database vendors are currently supported:

• MySQL

• Oracle

• Microsoft SQL Server

• PostgreSQL

• SAP Sybase SQL Anywhere

• SQLite

• Drizzle

The Doctrine 2 database layer can be used independently of the object-relational mapper. In order to use the DBAL all
you need is the Doctrine\Common and Doctrine\DBAL namespaces. Once you have the Common and DBAL
namespaces you must setup a class loader to be able to autoload the classes:

<?php
use Doctrine\Common\ClassLoader;

require '/path/to/doctrine/lib/Doctrine/Common/ClassLoader.php';

$classLoader = new ClassLoader('Doctrine', '/path/to/doctrine');
$classLoader->register();

Now you are able to load classes that are in the /path/to/doctrine directory like
/path/to/doctrine/Doctrine/DBAL/DriverManager.php which we will use later in this docu-
mentation to configure our first Doctrine DBAL connection.

3

Doctrine DBAL Documentation, Release 2.1.0

4 Chapter 1. Introduction

CHAPTER 2

Architecture

As already said, the DBAL is a thin layer on top of PDO. PDO itself is mainly defined in
terms of 2 classes: PDO and PDOStatement. The equivalent classes in the DBAL are
Doctrine\DBAL\Connection and Doctrine\DBAL\Statement. A Doctrine\DBAL\Connection
wraps a Doctrine\DBAL\Driver\Connection and a Doctrine\DBAL\Statement wraps a
Doctrine\DBAL\Driver\Statement.

Doctrine\DBAL\Driver\Connection and Doctrine\DBAL\Driver\Statement are just interfaces.
These interfaces are implemented by concrete drivers. For all PDO based drivers, PDO and PDOStatement are
the implementations of these interfaces. Thus, for PDO-based drivers, a Doctrine\DBAL\Connection
wraps a PDO instance and a Doctrine\DBAL\Statement wraps a PDOStatement instance. Even
more, a Doctrine\DBAL\Connection is a Doctrine\DBAL\Driver\Connection and a
Doctrine\DBAL\Statement is a Doctrine\DBAL\Driver\Statement.

What does a Doctrine\DBAL\Connection or a Doctrine\DBAL\Statement add to the underlying driver
implementations? The enhancements include SQL logging, events and control over the transaction isolation level in a
portable manner, among others.

A DBAL driver is defined to the outside in terms of 3 interfaces: Doctrine\DBAL\Driver,
Doctrine\DBAL\Driver\Connection and Doctrine\DBAL\Driver\Statement. The latter two re-
semble (a subset of) the corresponding PDO API.

A concrete driver implementation must provide implementation classes for these 3 interfaces.

The DBAL is separated into several different packages that perfectly separate responsibilities of the different RDBMS
layers.

2.1 Drivers

The drivers abstract a PHP specific database API by enforcing two interfaces:

• \Doctrine\DBAL\Driver\Driver

• \Doctrine\DBAL\Driver\Statement

The above two interfaces require exactly the same methods as PDO.

2.2 Platforms

The platforms abstract the generation of queries and which database features a platform supports. The
\Doctrine\DBAL\Platforms\AbstractPlatform defines the common denominator of what a database

5

Doctrine DBAL Documentation, Release 2.1.0

platform has to publish to the userland, to be fully supportable by Doctrine. This includes the SchemaTool, Transac-
tion Isolation and many other features. The Database platform for MySQL for example can be used by all 3 MySQL
extensions, PDO, Mysqli and ext/mysql.

2.3 Logging

The logging holds the interface and some implementations for debugging of Doctrine SQL query execution during a
request.

2.4 Schema

The schema offers an API for each database platform to execute DDL statements against your platform or retrieve
metadata about it. It also holds the Schema Abstraction Layer which is used by the different Schema Management
facilities of Doctrine DBAL and ORM.

2.5 Types

The types offer an abstraction layer for the converting and generation of types between Databases and PHP. Doctrine
comes bundled with some common types but offers the ability for developers to define custom types or extend existing
ones easily.

6 Chapter 2. Architecture

CHAPTER 3

Configuration

3.1 Getting a Connection

You can get a DBAL Connection through the Doctrine\DBAL\DriverManager class.

<?php
$config = new \Doctrine\DBAL\Configuration();
//..
$connectionParams = array(

'dbname' => 'mydb',
'user' => 'user',
'password' => 'secret',
'host' => 'localhost',
'driver' => 'pdo_mysql',

);
$conn = \Doctrine\DBAL\DriverManager::getConnection($connectionParams, $config);

Or, using the simpler URL form:

<?php
$config = new \Doctrine\DBAL\Configuration();
//..
$connectionParams = array(

'url' => 'mysql://user:secret@localhost/mydb',
);
$conn = \Doctrine\DBAL\DriverManager::getConnection($connectionParams, $config);

The DriverManager returns an instance of Doctrine\DBAL\Connection which is a wrapper around the
underlying driver connection (which is often a PDO instance).

The following sections describe the available connection parameters in detail.

3.1.1 Connecting using a URL

The easiest way to specify commonly used connection parameters is using a database URL. The scheme is used to
specify a driver, the user and password in the URL encode user and password for the connection, followed by the host
and port parts (the “authority”). The path after the authority part represents the name of the database, sans the leading
slash. Any query parameters are used as additional connection parameters.

The scheme names representing the drivers are either the regular driver names (see below) with any underscores in
their name replaced with a hyphen (to make them legal in URL scheme names), or one of the following simplified
driver names that serve as aliases:

7

Doctrine DBAL Documentation, Release 2.1.0

• db2: alias for ibm_db2

• mssql: alias for pdo_sqlsrv

• mysql/mysql2: alias for pdo_mysql

• pgsql/postgres/postgresql: alias for pdo_pgsql

• sqlite/sqlite3: alias for pdo_sqlite

For example, to connect to a “foo” MySQL DB using the pdo_mysql driver on localhost port 4486 with the charset
set to UTF-8, you would use the following URL:

mysql://localhost:4486/foo?charset=UTF-8

This is identical to the following connection string using the full driver name:

pdo-mysql://localhost:4486/foo?charset=UTF-8

If you wanted to use the drizzle_pdo__mysql driver instead:

drizzle-pdo-mysql://localhost:4486/foo?charset=UTF-8

In the two last example above, mind the dashes instead of the underscores in the URL schemes.

For connecting to an SQLite database, the authority portion of the URL is obviously irrelevant and thus can be omitted.
The path part of the URL is, like for all other drivers, stripped of its leading slash, resulting in a relative file name for
the database:

sqlite:///somedb.sqlite

This would access somedb.sqlite in the current working directory and is identical to the following:

sqlite://ignored:ignored@ignored:1234/somedb.sqlite

To specify an absolute file path, e.g. /usr/local/var/db.sqlite, simply use that as the database name, which
results in two leading slashes for the path part of the URL, and four slashes in total after the URL scheme name and
its following colon:

sqlite:////usr/local/var/db.sqlite

Which is, again, identical to supplying ignored user/pass/authority:

sqlite://notused:inthis@case//usr/local/var/db.sqlite

To connect to an in-memory SQLite instance, use :memory:: as the database name:

sqlite:///:memory:

Note: Any information extracted from the URL overwrites existing values for the parameter in question, but the rest
of the information is merged together. You could, for example, have a URL without the charset setting in the query
string, and then add a charset connection parameter next to url, to provide a default value in case the URL doesn’t
contain a charset value.

3.1.2 Driver

The driver specifies the actual implementations of the DBAL interfaces to use. It can be configured in one of three
ways:

• driver: The built-in driver implementation to use. The following drivers are currently available:

8 Chapter 3. Configuration

Doctrine DBAL Documentation, Release 2.1.0

– pdo_mysql: A MySQL driver that uses the pdo_mysql PDO extension.

– drizzle_pdo_mysql: A Drizzle driver that uses pdo_mysql PDO extension.

– mysqli: A MySQL driver that uses the mysqli extension.

– pdo_sqlite: An SQLite driver that uses the pdo_sqlite PDO extension.

– pdo_pgsql: A PostgreSQL driver that uses the pdo_pgsql PDO extension.

– pdo_oci: An Oracle driver that uses the pdo_oci PDO extension. Note that this driver caused prob-
lems in our tests. Prefer the oci8 driver if possible.

– pdo_sqlsrv: A Microsoft SQL Server driver that uses pdo_sqlsrv PDO Note that this driver caused
problems in our tests. Prefer the sqlsrv driver if possible.

– sqlsrv: A Microsoft SQL Server driver that uses the sqlsrv PHP extension.

– oci8: An Oracle driver that uses the oci8 PHP extension.

– sqlanywhere: A SAP Sybase SQL Anywhere driver that uses the sqlanywhere PHP extension.

• driverClass: Specifies a custom driver implementation if no ‘driver’ is specified. This allows the use of
custom drivers that are not part of the Doctrine DBAL itself.

• pdo: Specifies an existing PDO instance to use.

3.1.3 Wrapper Class

By default a Doctrine\DBAL\Connection is wrapped around a driver Connection. The wrapperClass
option allows to specify a custom wrapper implementation to use, however, a custom wrapper class must be a subclass
of Doctrine\DBAL\Connection.

3.1.4 Connection Details

The connection details identify the database to connect to as well as the credentials to use. The connection details can
differ depending on the used driver. The following sections describe the options recognized by each built-in driver.

Note: When using an existing PDO instance through the pdo option, specifying connection details is obviously not
necessary.

pdo_sqlite

• user (string): Username to use when connecting to the database.

• password (string): Password to use when connecting to the database.

• path (string): The filesystem path to the database file. Mutually exclusive with memory. path takes prece-
dence.

• memory (boolean): True if the SQLite database should be in-memory (non-persistent). Mutually exclusive with
path. path takes precedence.

3.1. Getting a Connection 9

Doctrine DBAL Documentation, Release 2.1.0

pdo_mysql

• user (string): Username to use when connecting to the database.

• password (string): Password to use when connecting to the database.

• host (string): Hostname of the database to connect to.

• port (integer): Port of the database to connect to.

• dbname (string): Name of the database/schema to connect to.

• unix_socket (string): Name of the socket used to connect to the database.

• charset (string): The charset used when connecting to the database.

drizzle_pdo_mysql

Requires drizzle plugin mysql_protocol or mysql_unix_socket_protocol to be enabled.
On Ubuntu this can be done by editing /etc/drizzle/conf.d/mysql-protocol.cnf or
/etc/drizzle/conf.d/mysql-unix-socket-protocol.cnf and restart drizzled daemon.

• user (string): Username to use when connecting to the database. Only needed if authentication is configured
for drizzled.

• password (string): Password to use when connecting to the database. Only needed if authentication is config-
ured for drizzled.

• host (string): Hostname of the database to connect to.

• port (integer): Port of the database to connect to.

• dbname (string): Name of the database/schema to connect to.

• unix_socket (string): Name of the socket used to connect to the database.

mysqli

• user (string): Username to use when connecting to the database.

• password (string): Password to use when connecting to the database.

• host (string): Hostname of the database to connect to.

• port (integer): Port of the database to connect to.

• dbname (string): Name of the database/schema to connect to.

• unix_socket (string): Name of the socket used to connect to the database.

• charset (string): The charset used when connecting to the database.

• driverOptions Any supported flags for mysqli found on http://www.php.net/manual/en/mysqli.real-
connect.php

pdo_pgsql

• user (string): Username to use when connecting to the database.

• password (string): Password to use when connecting to the database.

• host (string): Hostname of the database to connect to.

10 Chapter 3. Configuration

Doctrine DBAL Documentation, Release 2.1.0

• port (integer): Port of the database to connect to.

• dbname (string): Name of the database/schema to connect to.

• charset (string): The charset used when connecting to the database.

• sslmode (string): Determines whether or with what priority a SSL TCP/IP connection will be nego-
tiated with the server. See the list of available modes: http://www.postgresql.org/docs/9.1/static/libpq-
connect.html#LIBPQ-CONNECT-SSLMODE

PostgreSQL behaves differently with regard to booleans when you use PDO::ATTR_EMULATE_PREPARES
or not. To switch from using ’true’ and ’false’ as strings you can change to integers by using:
$conn->getDatabasePlatform()->setUseBooleanTrueFalseStrings($flag).

pdo_oci / oci8

• user (string): Username to use when connecting to the database.

• password (string): Password to use when connecting to the database.

• host (string): Hostname of the database to connect to.

• port (integer): Port of the database to connect to.

• dbname (string): Name of the database/schema to connect to.

• servicename (string): Optional name by which clients can connect to the database instance. Will be used as
Oracle’s SID connection parameter if given and defaults to Doctrine’s dbname connection parameter value.

• service (boolean): Whether to use Oracle’s SERVICE_NAME connection parameter in favour of SID when
connecting. The value for this will be read from Doctrine’s servicename if given, dbname otherwise.

• pooled (boolean): Whether to enable database resident connection pooling.

• charset (string): The charset used when connecting to the database.

• instancename (string): Optional parameter, complete whether to add the INSTANCE_NAME parameter
in the connection. It is generally used to connect to an Oracle RAC server to select the name of a particular
instance.

pdo_sqlsrv / sqlsrv

• user (string): Username to use when connecting to the database.

• password (string): Password to use when connecting to the database.

• host (string): Hostname of the database to connect to.

• port (integer): Port of the database to connect to.

• dbname (string): Name of the database/schema to connect to.

sqlanywhere

• user (string): Username to use when connecting to the database.

• password (string): Password to use when connecting to the database.

• server (string): Name of a running database server to connect to.

• host (string): Hostname of the database to connect to.

3.1. Getting a Connection 11

Doctrine DBAL Documentation, Release 2.1.0

• port (integer): Port of the database to connect to.

• dbname (string): Name of the database/schema to connect to.

• persistent (boolean): Whether to establish a persistent connection.

Depending on the used underlying platform version, you can specify any other connection parameter that is supported
by the particular platform version via the driverOptions option. You can find a list of supported connection
parameters for each platform version here:

• SQL Anywhere 10.0.1

• SQL Anywhere 11.0.0

• SQL Anywhere 11.0.1

• SQL Anywhere 12.0.0

• SQL Anywhere 12.0.1

• SAP Sybase SQL Anywhere 16.0

3.1.5 Automatic platform version detection

Doctrine ships with different database platform implementations for some vendors to support version specific features,
dialect and behaviour. As of Doctrine DBAL 2.5 the appropriate platform implementation for the underlying database
server version can be detected at runtime automatically for nearly all drivers. Before 2.5 you had to configure Doctrine
to use a certain platform implementation explicitly with the platform connection parameter (see section below).
Otherwise Doctrine always used a default platform implementation. For example if your application was backed by a
SQL Server 2012 database, Doctrine would still use the SQL Server 2008 platform implementation as it is the default,
unless you told Doctrine explicitly to use the SQL Server 2012 implementation.

The following drivers support automatic database platform detection out of the box without any extra configuration
required:

• pdo_mysql

• mysqli

• pdo_pgsql

• pdo_sqlsrv

• sqlsrv

Some drivers cannot provide the version of the underlying database server without having to query for it explicitly.
For performance reasons (to save one extra query on every connect), Doctrine does not enable automatic database
platform version detection for the following drivers:

• sqlanywhere

If you still want to tell Doctrine which database server version you are using in order to choose the appropriate platform
implementation, you can pass the serverVersion option with a vendor specific version string that matches the
database server version you are using. You can also pass this option if you want to disable automatic database platform
detection for a driver that natively supports it and choose the platform version implementation explicitly.

3.1.6 Custom Platform

Each built-in driver uses a default implementation of Doctrine\DBAL\Platforms\AbstractPlatform. If
you wish to use a customized or custom implementation, you can pass a precreated instance in the platform option.

12 Chapter 3. Configuration

http://dcx.sybase.com/index.html#1001/en/dbdaen10/da-conmean.html
http://dcx.sybase.com/index.html#1100/en/dbadmin_en11/conmean.html
http://dcx.sybase.com/index.html#1101/en/dbadmin_en11/conmean.html
http://dcx.sybase.com/index.html#1200/en/dbadmin/da-conparm.html
http://dcx.sybase.com/index.html#1201/en/dbadmin/da-conparm.html
http://dcx.sybase.com/index.html#sa160/en/dbadmin/da-conparm.html

Doctrine DBAL Documentation, Release 2.1.0

3.1.7 Custom Driver Options

The driverOptions option allows to pass arbitrary options through to the driver. This is equivalent to the fourth
argument of the PDO constructor.

3.1. Getting a Connection 13

http://php.net/manual/en/pdo.construct.php

Doctrine DBAL Documentation, Release 2.1.0

14 Chapter 3. Configuration

CHAPTER 4

Data Retrieval And Manipulation

Doctrine DBAL follows the PDO API very closely. If you have worked with PDO before you will get to know Doctrine
DBAL very quickly. On top of the API provided by PDO there are tons of convenience functions in Doctrine DBAL.

4.1 Data Retrieval

Using a database implies retrieval of data. It is the primary use-case of a database. For this purpose each database
vendor exposes a Client API that can be integrated into programming languages. PHP has a generic abstraction layer
for this kind of API called PDO (PHP Data Objects). However because of disagreements between the PHP community
there are often native extensions for each database vendor that are much more maintained (OCI8 for example).

Doctrine DBAL API builds on top of PDO and integrates native extensions by wrapping
them into the PDO API as well. If you already have an open connection through the
Doctrine\DBAL\DriverManager::getConnection() method you can start using this API for data
retrieval easily.

Start writing an SQL query and pass it to the query() method of your connection:

<?php
use Doctrine\DBAL\DriverManager;

$conn = DriverManager::getConnection($params, $config);

$sql = "SELECT * FROM articles";
$stmt = $conn->query($sql); // Simple, but has several drawbacks

The query method executes the SQL and returns a database statement object. A database statement object can be
iterated to retrieve all the rows that matched the query until there are no more rows:

<?php

while ($row = $stmt->fetch()) {
echo $row['headline'];

}

The query method is the most simple one for fetching data, but it also has several drawbacks:

• There is no way to add dynamic parameters to the SQL query without modifying $sql itself. This can easily
lead to a category of security holes called SQL injection, where a third party can modify the SQL executed and
even execute their own queries through clever exploiting of the security hole.

15

Doctrine DBAL Documentation, Release 2.1.0

• Quoting dynamic parameters for an SQL query is tedious work and requires lots of use of the
Doctrine\DBAL\Connection#quote() method, which makes the original SQL query hard to
read/understand.

• Databases optimize SQL queries before they are executed. Using the query method you will trigger the opti-
mization process over and over again, although it could re-use this information easily using a technique called
prepared statements.

This three arguments and some more technical details hopefully convinced you to investigate prepared statements for
accessing your database.

4.1.1 Dynamic Parameters and Prepared Statements

Consider the previous query, now parameterized to fetch only a single article by id. Using ext/mysql (still the pri-
mary choice of MySQL access for many developers) you had to escape every value passed into the query using
mysql_real_escape_string() to avoid SQL injection:

<?php
$sql = "SELECT * FROM articles WHERE id = '" . mysql_real_escape_string($id, $link) . "'";
$rs = mysql_query($sql);

If you start adding more and more parameters to a query (for example in UPDATE or INSERT statements) this ap-
proach might lead to complex to maintain SQL queries. The reason is simple, the actual SQL query is not clearly
separated from the input parameters. Prepared statements separate these two concepts by requiring the developer to
add placeholders to the SQL query (prepare) which are then replaced by their actual values in a second step (execute).

<?php
// $conn instanceof Doctrine\DBAL\Connection

$sql = "SELECT * FROM articles WHERE id = ?";
$stmt = $conn->prepare($sql);
$stmt->bindValue(1, $id);
$stmt->execute();

Placeholders in prepared statements are either simple positional question marks (?) or named labels starting with a
double-colon (:name1). You cannot mix the positional and the named approach. The approach using question marks is
called positional, because the values are bound in order from left to right to any question mark found in the previously
prepared SQL query. That is why you specify the position of the variable to bind into the bindValue() method:

<?php
// $conn instanceof Doctrine\DBAL\Connection

$sql = "SELECT * FROM articles WHERE id = ? AND status = ?";
$stmt = $conn->prepare($sql);
$stmt->bindValue(1, $id);
$stmt->bindValue(2, $status);
$stmt->execute();

Named parameters have the advantage that their labels can be re-used and only need to be bound once:

<?php
// $conn instanceof Doctrine\DBAL\Connection

$sql = "SELECT * FROM users WHERE name = :name OR username = :name";
$stmt = $conn->prepare($sql);
$stmt->bindValue("name", $name);
$stmt->execute();

16 Chapter 4. Data Retrieval And Manipulation

Doctrine DBAL Documentation, Release 2.1.0

The following section describes the API of Doctrine DBAL with regard to prepared statements.

Note: Support for positional and named prepared statements varies between the different database extensions. PDO
implements its own client side parser so that both approaches are feasible for all PDO drivers. OCI8/Oracle only
supports named parameters, but Doctrine implements a client side parser to allow positional parameters also.

4.1.2 Using Prepared Statements

There are three low-level methods on Doctrine\DBAL\Connection that allow you to use prepared statements:

• prepare($sql) - Create a prepared statement of the type Doctrine\DBAL\Statement. Using this
method is preferred if you want to re-use the statement to execute several queries with the same SQL statement
only with different parameters.

• executeQuery($sql, $params, $types) - Create a prepared statement for the passed SQL query,
bind the given params with their binding types and execute the query. This method returns the executed prepared
statement for iteration and is useful for SELECT statements.

• executeUpdate($sql, $params, $types) - Create a prepared statement for the passed SQL query,
bind the given params with their binding types and execute the query. This method returns the number of
affected rows by the executed query and is useful for UPDATE, DELETE and INSERT statements.

A simple usage of prepare was shown in the previous section, however it is useful to dig into the features of a
Doctrine\DBAL\Statement a little bit more. There are essentially two different types of methods available
on a statement. Methods for binding parameters and types and methods to retrieve data from a statement.

• bindValue($pos, $value, $type) - Bind a given value to the positional or named parameter in the
prepared statement.

• bindParam($pos, &$param, $type) - Bind a given reference to the positional or named parameter in
the prepared statement.

If you are finished with binding parameters you have to call execute() on the statement, which will trigger a query
to the database. After the query is finished you can access the results of this query using the fetch API of a statement:

• fetch($fetchStyle) - Retrieves the next row from the statement or false if there are none. Moves the
pointer forward one row, so that consecutive calls will always return the next row.

• fetchColumn($column) - Retrieves only one column of the next row specified by column index. Moves
the pointer forward one row, so that consecutive calls will always return the next row.

• fetchAll($fetchStyle) - Retrieves all rows from the statement.

The fetch API of a prepared statement obviously works only for SELECT queries.

If you find it tedious to write all the prepared statement code you can al-
ternatively use the Doctrine\DBAL\Connection#executeQuery() and
Doctrine\DBAL\Connection#executeUpdate() methods. See the API section below on details
how to use them.

Additionally there are lots of convenience methods for data-retrieval and manipulation on the Connection, which are
all described in the API section below.

4.2 Binding Types

Doctrine DBAL extends PDOs handling of binding types in prepared statement considerably. Besides the well known
\PDO::PARAM_* constants you can make use of two very powerful additional features.

4.2. Binding Types 17

Doctrine DBAL Documentation, Release 2.1.0

4.2.1 DoctrineDBALTypes Conversion

If you don’t specify an integer (through a PDO::PARAM* constant) to any of the parameter binding methods but
a string, Doctrine DBAL will ask the type abstraction layer to convert the passed value from its PHP to a database
representation. This way you can pass \DateTime instances to a prepared statement and have Doctrine convert them
to the appropriate vendors database format:

<?php
$date = new \DateTime("2011-03-05 14:00:21");
$stmt = $conn->prepare("SELECT * FROM articles WHERE publish_date > ?");
$stmt->bindValue(1, $date, "datetime");
$stmt->execute();

If you take a look at Doctrine\DBAL\Types\DateTimeType you will see that parts of the conversion is dele-
gated to a method on the current database platform, which means this code works independent of the database you are
using.

Note: Be aware this type conversion only works with Statement#bindValue(),
Connection#executeQuery() and Connection#executeUpdate(). It is not supported to pass a
doctrine type name to Statement#bindParam(), because this would not work with binding by reference.

4.2.2 List of Parameters Conversion

Note: This is a Doctrine 2.1 feature.

One rather annoying bit of missing functionality in SQL is the support for lists of parameters. You cannot bind an
array of values into a single prepared statement parameter. Consider the following very common SQL statement:

SELECT * FROM articles WHERE id IN (?)

Since you are using an IN expression you would really like to use it in the following way (and I guess everybody has
tried to do this once in his life, before realizing it doesn’t work):

<?php
$stmt = $conn->prepare('SELECT * FROM articles WHERE id IN (?)');
// THIS WILL NOT WORK:
$stmt->bindValue(1, array(1, 2, 3, 4, 5, 6));
$stmt->execute();

Implementing a generic way to handle this kind of query is tedious work. This is why most developers fallback to
inserting the parameters directly into the query, which can open SQL injection possibilities if not handled carefully.

Doctrine DBAL implements a very powerful parsing process that will make this kind of prepared statement possible
natively in the binding type system. The parsing necessarily comes with a performance overhead, but only if you really
use a list of parameters. There are two special binding types that describe a list of integers or strings:

• \Doctrine\DBAL\Connection::PARAM_INT_ARRAY

• \Doctrine\DBAL\Connection::PARAM_STR_ARRAY

Using one of this constants as a type you can activate the SQLParser inside Doctrine that rewrites the SQL and flattens
the specified values into the set of parameters. Consider our previous example:

<?php
$stmt = $conn->executeQuery('SELECT * FROM articles WHERE id IN (?)',

array(array(1, 2, 3, 4, 5, 6)),

18 Chapter 4. Data Retrieval And Manipulation

Doctrine DBAL Documentation, Release 2.1.0

array(\Doctrine\DBAL\Connection::PARAM_INT_ARRAY)
);

The SQL statement passed to Connection#executeQuery is not the one actually passed to the database. It is
internally rewritten to look like the following explicit code that could be specified as well:

<?php
// Same SQL WITHOUT usage of Doctrine\DBAL\Connection::PARAM_INT_ARRAY
$stmt = $conn->executeQuery('SELECT * FROM articles WHERE id IN (?, ?, ?, ?, ?, ?)',

array(1, 2, 3, 4, 5, 6),
array(\PDO::PARAM_INT, \PDO::PARAM_INT, \PDO::PARAM_INT, \PDO::PARAM_INT, \PDO::PARAM_INT, \PDO::PARAM_INT)

);

This is much more complicated and is ugly to write generically.

Note: The parameter list support only works with Doctrine\DBAL\Connection::executeQuery() and
Doctrine\DBAL\Connection::executeUpdate(), NOT with the binding methods of a prepared statement.

4.3 API

The DBAL contains several methods for executing queries against your configured database for data retrieval and
manipulation. Below we’ll introduce these methods and provide some examples for each of them.

4.3.1 prepare()

Prepare a given SQL statement and return the \Doctrine\DBAL\Driver\Statement instance:

<?php
$statement = $conn->prepare('SELECT * FROM user');
$statement->execute();
$users = $statement->fetchAll();

/*
array(

0 => array(
'username' => 'jwage',
'password' => 'changeme'

)
)

*/

4.3.2 executeUpdate()

Executes a prepared statement with the given SQL and parameters and returns the affected rows count:

<?php
$count = $conn->executeUpdate('UPDATE user SET username = ? WHERE id = ?', array('jwage', 1));
echo $count; // 1

The $types variable contains the PDO or Doctrine Type constants to perform necessary type conversions between
actual input parameters and expected database values. See the Types section for more information.

4.3. API 19

Doctrine DBAL Documentation, Release 2.1.0

4.3.3 executeQuery()

Creates a prepared statement for the given SQL and passes the parameters to the execute method, then returning the
statement:

<?php
$statement = $conn->executeQuery('SELECT * FROM user WHERE username = ?', array('jwage'));
$user = $statement->fetch();

/*
array(

0 => 'jwage',
1 => 'changeme'

)

*/

The $types variable contains the PDO or Doctrine Type constants to perform necessary type conversions between
actual input parameters and expected database values. See the Types section for more information.

4.3.4 fetchAll()

Execute the query and fetch all results into an array:

<?php
$users = $conn->fetchAll('SELECT * FROM user');

/*
array(

0 => array(
'username' => 'jwage',
'password' => 'changeme'

)
)

*/

4.3.5 fetchArray()

Numeric index retrieval of first result row of the given query:

<?php
$user = $conn->fetchArray('SELECT * FROM user WHERE username = ?', array('jwage'));

/*
array(

0 => 'jwage',
1 => 'changeme'

)

*/

4.3.6 fetchColumn()

Retrieve only the given column of the first result row.

20 Chapter 4. Data Retrieval And Manipulation

Doctrine DBAL Documentation, Release 2.1.0

<?php
$username = $conn->fetchColumn('SELECT username FROM user WHERE id = ?', array(1), 0);
echo $username; // jwage

4.3.7 fetchAssoc()

Retrieve assoc row of the first result row.

<?php
$user = $conn->fetchAssoc('SELECT * FROM user WHERE username = ?', array('jwage'));
/*
array(

'username' => 'jwage',
'password' => 'changeme'

)

*/

There are also convenience methods for data manipulation queries:

4.3.8 delete()

Delete all rows of a table matching the given identifier, where keys are column names.

<?php
$conn->delete('user', array('id' => 1));
// DELETE FROM user WHERE id = ? (1)

4.3.9 insert()

Insert a row into the given table name using the key value pairs of data.

<?php
$conn->insert('user', array('username' => 'jwage'));
// INSERT INTO user (username) VALUES (?) (jwage)

4.3.10 update()

Update all rows for the matching key value identifiers with the given data.

<?php
$conn->update('user', array('username' => 'jwage'), array('id' => 1));
// UPDATE user (username) VALUES (?) WHERE id = ? (jwage, 1)

By default the Doctrine DBAL does no escaping. Escaping is a very tricky business to do automatically, therefore
there is none by default. The ORM internally escapes all your values, because it has lots of metadata available about
the current context. When you use the Doctrine DBAL as standalone, you have to take care of this yourself. The
following methods help you with it:

4.3.11 quote()

Quote a value:

4.3. API 21

Doctrine DBAL Documentation, Release 2.1.0

<?php
$quoted = $conn->quote('value');
$quoted = $conn->quote('1234', \PDO::PARAM_INT);

4.3.12 quoteIdentifier()

Quote an identifier according to the platform details.

<?php
$quoted = $conn->quoteIdentifier('id');

22 Chapter 4. Data Retrieval And Manipulation

CHAPTER 5

SQL Query Builder

Doctrine 2.1 ships with a powerful query builder for the SQL language. This QueryBuilder object has methods to add
parts to an SQL statement. If you built the complete state you can execute it using the connection it was generated
from. The API is roughly the same as that of the DQL Query Builder.

You can access the QueryBuilder by calling Doctrine\DBAL\Connection#createQueryBuilder:

<?php

$conn = DriverManager::getConnection(array(/*..*/));
$queryBuilder = $conn->createQueryBuilder();

5.1 Security: Safely preventing SQL Injection

It is important to understand how the query builder works in terms of preventing SQL injection. Because SQL allows
expressions in almost every clause and position the Doctrine QueryBuilder can only prevent SQL injections for calls
to the methods setFirstResult() and setMaxResults().

All other methods cannot distinguish between user- and developer input and are therefore subject to the possibility of
SQL injection.

To safely work with the QueryBuilder you should NEVER pass user input to any of the meth-
ods of the QueryBuilder and use the placeholder ? or :name syntax in combination with
$queryBuilder->setParameter($placeholder, $value) instead:

<?php

$queryBuilder
->select('id', 'name')
->from('users')
->where('email = ?')
->setParameter(0, $userInputEmail)

;

Note: Due to an API design error the numerical parameters in the QueryBuilder API start with the needle 0, not with
1 as in the PDO API. This is very unfortunate, but we have found no BC way to fix this.

23

Doctrine DBAL Documentation, Release 2.1.0

5.2 Building a Query

The \Doctrine\DBAL\Query\QueryBuilder supports building SELECT, INSERT, UPDATE and DELETE
queries. Which sort of query you are building depends on the methods you are using.

For SELECT queries you start with invoking the select() method

<?php

$queryBuilder
->select('id', 'name')
->from('users');

For INSERT, UPDATE and DELETE queries you can pass the table name into the insert($tableName),
update($tableName) and delete($tableName):

<?php

$queryBuilder
->insert('users')

;

$queryBuilder
->update('users')

;

$queryBuilder
->delete('users')

;

You can convert a query builder to its SQL string representation by calling $queryBuilder->getSQL() or
casting the object to string.

5.2.1 WHERE-Clause

The SELECT, UPDATE and DELETE types of queries allow where clauses with the following API:

<?php

$queryBuilder
->select('id', 'name')
->from('users')
->where('email = ?')

;

Calling where() overwrites the previous clause and you can prevent this by combining expressions with
andWhere() and orWhere() methods. You can alternatively use expressions to generate the where clause.

5.2.2 Table alias

The from() method takes an optional second parameter with which a table alias can be specified.

<?php

$queryBuilder
->select('u.id', 'u.name')

24 Chapter 5. SQL Query Builder

Doctrine DBAL Documentation, Release 2.1.0

->from('users', 'u')
->where('u.email = ?')

;

5.2.3 GROUP BY and HAVING Clause

The SELECT statement can be specified with GROUP BY and HAVING clauses. Using having() works exactly
like using where() and there are corresponding andHaving() and orHaving() methods to combine predicates.
For the GROUP BY you can use the methods groupBy() which replaces previous expressions or addGroupBy()
which adds to them:

<?php
$queryBuilder

->select('DATE(last_login) as date', 'COUNT(id) AS users')
->from('users')
->groupBy('DATE(last_login)')
->having('users > 10')

;

5.2.4 Join Clauses

For SELECT clauses you can generate different types of joins: INNER, LEFT and RIGHT. The RIGHT join is not
portable across all platforms (Sqlite for example does not support it).

A join always belongs to one part of the from clause. This is why you have to specify the alias of the FROM part the
join belongs to as the first argument.

As a second and third argument you can then specify the name and alias of the join-table and the fourth argument
contains the ON clause.

<?php
$queryBuilder

->select('u.id', 'u.name', 'p.number')
->from('users', 'u')
->innerJoin('u', 'phonenumbers', 'p', 'u.id = p.user_id')

The method signature for join(), innerJoin(), leftJoin() and rightJoin() is the same. join() is a
shorthand syntax for innerJoin().

5.2.5 Order-By Clause

The orderBy($sort, $order = null) method adds an expression to the ORDER BY clause. Be aware that
the optional $order parameter is not safe for user input and accepts SQL expressions.

<?php
$queryBuilder

->select('id', 'name')
->from('users')
->orderBy('username', 'ASC')
->addOrderBy('last_login', 'ASC NULLS FIRST')

;

Use the addOrderBy method to add instead of replace the orderBy clause.

5.2. Building a Query 25

Doctrine DBAL Documentation, Release 2.1.0

5.2.6 Limit Clause

Only a few database vendors have the LIMIT clause as known from MySQL, but we support this functionality for all
vendors using workarounds. To use this functionality you have to call the methods setFirstResult($offset)
to set the offset and setMaxResults($limit) to set the limit of results returned.

<?php
$queryBuilder

->select('id', 'name')
->from('users')
->setFirstResult(10)
->setMaxResults(20);

5.2.7 VALUES Clause

For the INSERT clause setting the values for columns to insert can be done with the values() method on the query
builder:

<?php

$queryBuilder
->insert('users')
->values(

array(
'name' => '?',
'password' => '?'

)
)
->setParameter(0, $username)
->setParameter(1, $password)

;
// INSERT INTO users (name, password) VALUES (?, ?)

Each subsequent call to values() overwrites any previous set values. Setting single values instead of all at once is
also possible with the setValue() method:

<?php

$queryBuilder
->insert('users')
->setValue('name', '?')
->setValue('password', '?')
->setParameter(0, $username)
->setParameter(1, $password)

;
// INSERT INTO users (name, password) VALUES (?, ?)

Of course you can also use both methods in combination:

<?php

$queryBuilder
->insert('users')
->values(

array(
'name' => '?'

)
)

26 Chapter 5. SQL Query Builder

Doctrine DBAL Documentation, Release 2.1.0

->setParameter(0, $username)
;
// INSERT INTO users (name) VALUES (?)

if ($password) {
$queryBuilder

->setValue('password', '?')
->setParameter(1, $password)

;
// INSERT INTO users (name, password) VALUES (?, ?)

}

Not setting any values at all will result in an empty insert statement:

<?php

$queryBuilder
->insert('users')

;
// INSERT INTO users () VALUES ()

5.2.8 Set Clause

For the UPDATE clause setting columns to new values is necessary and can be done with the set() method on the
query builder. Be aware that the second argument allows expressions and is not safe for user-input:

<?php

$queryBuilder
->update('users', 'u')
->set('u.logins', 'u.logins + 1')
->set('u.last_login', '?')
->setParameter(0, $userInputLastLogin)

;

5.3 Building Expressions

For more complex WHERE, HAVING or other clauses you can use expressions for building these query parts. You can
invoke the expression API, by calling $queryBuilder->expr() and then invoking the helper method on it.

Most notably you can use expressions to build nested And-/Or statements:

<?php

$queryBuilder
->select('id', 'name')
->from('users')
->where(

$queryBuilder->expr()->andX(
$queryBuilder->expr()->eq('username', '?'),
$queryBuilder->expr()->eq('email', '?')

)
);

The andX() and orX() methods accept an arbitrary amount of arguments and can be nested in each other.

5.3. Building Expressions 27

Doctrine DBAL Documentation, Release 2.1.0

There is a bunch of methods to create comparisons and other SQL snippets on the Expression object that you can see
on the API documentation.

5.4 Binding Parameters to Placeholders

It is often not necessary to know about the exact placeholder names during the building of a query. You can use two
helper methods to bind a value to a placeholder and directly use that placeholder in your query as a return value:

<?php

$queryBuilder
->select('id', 'name')
->from('users')
->where('email = ' . $queryBuilder->createNamedParameter($userInputEmail))

;
// SELECT id, name FROM users WHERE email = :dcValue1

$queryBuilder
->select('id', 'name')
->from('users')
->where('email = ' . $queryBuilder->createPositionalParameter($userInputEmail))

;
// SELECT id, name FROM users WHERE email = ?

28 Chapter 5. SQL Query Builder

CHAPTER 6

Transactions

A Doctrine\DBAL\Connection provides a PDO-like API for transaction management, with the methods
Connection#beginTransaction(), Connection#commit() and Connection#rollback().

Transaction demarcation with the Doctrine DBAL looks as follows:

<?php
$conn->beginTransaction();
try{

// do stuff
$conn->commit();

} catch(Exception $e) {
$conn->rollback();
throw $e;

}

Alternatively, the control abstraction Connection#transactional($func) can be used to make the code
more concise and to make sure you never forget to rollback the transaction in the case of an exception. The following
code snippet is functionally equivalent to the previous one:

<?php
$conn->transactional(function($conn) {

// do stuff
});

The Doctrine\DBAL\Connection also has methods to control the transaction isolation level as
supported by the underlying database. Connection#setTransactionIsolation($level) and
Connection#getTransactionIsolation() can be used for that purpose. The possible isolation levels are
represented by the following constants:

<?php
Connection::TRANSACTION_READ_UNCOMMITTED
Connection::TRANSACTION_READ_COMMITTED
Connection::TRANSACTION_REPEATABLE_READ
Connection::TRANSACTION_SERIALIZABLE

The default transaction isolation level of a Doctrine\DBAL\Connection is chosen by the underlying platform
but it is always at least READ_COMMITTED.

6.1 Transaction Nesting

A Doctrine\DBAL\Connection also adds support for nesting transactions, or rather propagating transaction
control up the call stack. For that purpose, the Connection class keeps an internal counter that represents the

29

Doctrine DBAL Documentation, Release 2.1.0

nesting level and is increased/decreased as beginTransaction(), commit() and

rollback() are invoked. beginTransaction() increases the

nesting level whilst commit() and rollback() decrease the nesting level. The nesting level starts at 0. When-
ever the nesting level transitions from 0 to 1, beginTransaction() is invoked on the underlying driver
connection and whenever the nesting level transitions from 1 to 0, commit() or rollback() is invoked
on the underlying driver, depending on whether the transition was caused by Connection#commit() or
Connection#rollback().

What this means is that transaction control is basically passed to code higher up in the call stack and the inner trans-
action block is ignored, with one important exception that is described further below. Do not confuse this with “real”
nested transactions or savepoints. These are not supported by Doctrine. There is always only a single, real database
transaction.

To visualize what this means in practice, consider the following example:

<?php
// $conn instanceof Doctrine\DBAL\Connection
$conn->beginTransaction(); // 0 => 1, "real" transaction started
try {

...

// nested transaction block, this might be in some other API/library code that is
// unaware of the outer transaction.
$conn->beginTransaction(); // 1 => 2
try {

...

$conn->commit(); // 2 => 1
} catch (Exception $e) {

$conn->rollback(); // 2 => 1, transaction marked for rollback only
throw $e;

}

...

$conn->commit(); // 1 => 0, "real" transaction committed
} catch (Exception $e) {

$conn->rollback(); // 1 => 0, "real" transaction rollback
throw $e;

}

However, a rollback in a nested transaction block will always mark the current transaction so that the only
possible outcome of the transaction is to be rolled back. That means in the above example, the rollback in the inner
transaction block marks the whole transaction for rollback only. Even if the nested transaction block would not rethrow
the exception, the transaction is marked for rollback only and the commit of the outer transaction would trigger an
exception, leading to the final rollback. This also means that you can not successfully commit some changes in an
outer transaction if an inner transaction block fails and issues a rollback, even if this would be the desired behavior
(i.e. because the nested operation is “optional” for the purpose of the outer transaction block). To achieve that, you
need to restructure your application logic so as to avoid nesting transaction blocks. If this is not possible because the
nested transaction blocks are in a third-party API you’re out of luck.

All that is guaruanteed to the inner transaction is that it still happens atomically, all or nothing, the transaction just gets
a wider scope and the control is handed to the outer scope.

Note: The transaction nesting described here is a debated feature that has its critics. Form your own opinion. We
recommend avoiding nesting transaction blocks when possible, and most of the time, it is possible. Transaction control

30 Chapter 6. Transactions

Doctrine DBAL Documentation, Release 2.1.0

should mostly be left to a service layer and not be handled in data access objects or similar.

Warning: Directly invoking PDO#beginTransaction(), PDO#commit() or PDO#rollback() or the
corresponding methods on the particular Doctrine\DBAL\Driver\Connection instance in use bypasses
the transparent transaction nesting that is provided by Doctrine\DBAL\Connection and can therefore cor-
rupt the nesting level, causing errors with broken transaction boundaries that may be hard to debug.

6.2 Auto-commit mode

A Doctrine\DBAL\Connection supports setting the auto-commit mode to control whether queries should
be automatically wrapped into a transaction or directly be committed to the database. By default a connection
runs in auto-commit mode which means that it is non-transactional unless you start a transaction explicitly via
beginTransaction(). To have a connection automatically open up a new transaction on connect() and after
commit() or rollback(), you can disable auto-commit mode with setAutoCommit(false).

<?php
// define connection parameters $params and initialize driver $driver

$conn = new \Doctrine\DBAL\Connection($params, $driver);

$conn->setAutoCommit(false); // disables auto-commit
$conn->connect(); // connects and immediately starts a new transaction

try {
// do stuff
$conn->commit(); // commits transaction and immediately starts a new one

} catch (\Exception $e) {
$conn->rollback(); // rolls back transaction and immediately starts a new one

}

// still transactional

Note: Changing auto-commit mode during an active transaction, implicitly commits active transactions for that
particular connection.

<?php
// define connection parameters $params and initialize driver $driver

$conn = new \Doctrine\DBAL\Connection($params, $driver);

// we are in auto-commit mode
$conn->beginTransaction();

// disable auto-commit, commits currently active transaction
$conn->setAutoCommit(false); // also causes a new transaction to be started

// no-op as auto-commit is already disabled
$conn->setAutoCommit(false);

// enable auto-commit again, commits currently active transaction
$conn->setAutoCommit(true); // does not start a new transaction automatically

Committing or rolling back an active transaction will of course only open up a new transaction automatically if the
particular action causes the transaction context of a connection to terminate. That means committing or rolling back

6.2. Auto-commit mode 31

Doctrine DBAL Documentation, Release 2.1.0

nested transactions are not affected by this behaviour.

<?php
// we are not in auto-commit mode, transaction is active

try {
// do stuff

$conn->beginTransaction(); // start inner transaction, nesting level 2

try {
// do stuff
$conn->commit(); // commits inner transaction, does not start a new one

} catch (\Exception $e) {
$conn->rollback(); // rolls back inner transaction, does not start a new one

}

// do stuff

$conn->commit(); // commits outer transaction, and immediately starts a new one
} catch (\Exception $e) {

$conn->rollback(); // rolls back outer transaction, and immediately starts a new one
}

To initialize a Doctrine\DBAL\Connection with auto-commit disabled, you can also
use the Doctrine\DBAL\Configuration container to modify the default auto-commit
mode via Doctrine\DBAL\Configuration::setAutoCommit(false) and pass it to a
Doctrine\DBAL\Connection when instantiating.

32 Chapter 6. Transactions

CHAPTER 7

Platforms

Platforms abstract query generation and the subtle differences of the supported database vendors. In most cases you
don’t need to interact with the Doctrine\DBAL\Platforms package a lot, but there might be certain cases when
you are programming database independent where you want to access the platform to generate queries for you.

The platform can be accessed from any Doctrine\DBAL\Connection instance by calling the
getDatabasePlatform() method.

<?php
$platform = $conn->getDatabasePlatform();

Each database driver has a platform associated with it by default. Several drivers also share the same platform, for
example PDO_OCI and OCI8 share the OraclePlatform.

Doctrine provides abstraction for different versions of platforms if necessary to represent their specific features and
dialects. For example has Microsoft added support for sequences in their 2012 version. Therefore Doctrine offers a
separate platform class for this extending the previous 2008 version. The 2008 version adds support for additional data
types which in turn don’t exist in the previous 2005 version and so on. A list of available platform classes that can be
used for each vendor can be found as follows:

7.1 MySQL

• MySqlPlatform for version 5.0 and above.

• MySQL57Platform for version 5.7 and above.

7.2 Oracle

• OraclePlatform for all versions.

7.3 Microsoft SQL Server

• SQLServerPlatform for version 2000 and above.

• SQLServer2005Platform for version 2005 and above.

• SQLServer2008Platform for version 2008 and above.

• SQLServer2012Platform for version 2012 and above.

33

Doctrine DBAL Documentation, Release 2.1.0

7.4 PostgreSQL

• PostgreSqlPlatform for all versions.

• PostgreSQL91Platform for version 9.1 and above.

• PostgreSQL92Platform for version 9.2 and above.

7.5 SAP Sybase SQL Anywhere

• SQLAnywherePlatform for version 10 and above.

• SQLAnywhere11Platform for version 11 and above.

• SQLAnywhere12Platform for version 12 and above.

• SQLAnywhere16Platform for version 16 and above.

7.6 SQLite

• SqlitePlatform for all versions.

7.7 Drizzle

• DrizzlePlatform for all versions.

It is highly encouraged to use the platform class that matches your database vendor and version best. Otherwise it is
not guaranteed that the compatibility in terms of SQL dialect and feature support between Doctrine DBAL and the
database server will always be given.

If you want to overwrite parts of your platform you can do so when creating a connection. There is a platform
option you can pass an instance of the platform you want the connection to use:

<?php
$myPlatform = new MyPlatform();
$options = array(

'driver' => 'pdo_sqlite',
'path' => 'database.sqlite',
'platform' => $myPlatform

);
$conn = DriverManager::getConnection($options);

This way you can optimize your schema or generated SQL code with features that might not be portable for instance,
however are required for your special needs. This can include using triggers or views to simulate features or adding
behaviour to existing SQL functions.

Platforms are also responsible to know which database type translates to which PHP Type. This is a very tricky issue
across all the different database vendors, for example MySQL BIGINT and Oracle NUMBER should be handled as
integer. Doctrine 2 offers a powerful way to abstract the database to php and back conversion, which is described in
the next section.

34 Chapter 7. Platforms

CHAPTER 8

Types

Besides abstraction of SQL one needs a translation between database and PHP data-types to implement database
independent applications. Doctrine 2 has a type translation system baked in that supports the conversion from and to
PHP values from any database platform, as well as platform independent SQL generation for any Doctrine Type.

Using the ORM you generally don’t need to know about the Type system. This is unless you want to make use of
database vendor specific database types not included in Doctrine 2.

Types are flyweights. This means there is only ever one instance of a type and it is not allowed to contain any state. Cre-
ation of type instances is abstracted through a static get method Doctrine\DBAL\Types\Type::getType().

Types are abstracted across all the supported database vendors.

8.1 Reference

The following chapter gives an overview of all available Doctrine 2 types with short explanations
on their context and usage. The type names listed here equal those that can be passed to the
Doctrine\DBAL\Types\Type::getType() factory method in order to retrieve the desired type instance.

<?php

// Returns instance of \Doctrine\DBAL\Types\IntegerType
$type = \Doctrine\DBAL\Types\Type::getType('integer');

8.1.1 Numeric types

Types that map numeric data such as integers, fixed and floating point numbers.

Integer types

Types that map numeric data without fractions.

smallint

Maps and converts 2-byte integer values. Unsigned integer values have a range of 0 to 65535 while signed integer
values have a range of 32768 to 32767. If you know the integer data you want to store always fits into one of
these ranges you should consider using this type. Values retrieved from the database are always converted to PHP’s
integer type or null if no data is present.

35

Doctrine DBAL Documentation, Release 2.1.0

Note: Not all of the database vendors support unsigned integers, so such an assumption might not be propagated to
the database.

integer

Maps and converts 4-byte integer values. Unsigned integer values have a range of 0 to 4294967295 while signed
integer values have a range of 2147483648 to 2147483647. If you know the integer data you want to store always fits
into one of these ranges you should consider using this type. Values retrieved from the database are always converted
to PHP’s integer type or null if no data is present.

Note: Not all of the database vendors support unsigned integers, so such an assumption might not be propagated to
the database.

bigint

Maps and converts 8-byte integer values. Unsigned integer values have a range of 0 to 18446744073709551615 while
signed integer values have a range of 9223372036854775808 to 9223372036854775807. If you know the integer data
you want to store always fits into one of these ranges you should consider using this type. Values retrieved from the
database are always converted to PHP’s string type or null if no data is present.

Note: For compatibility reasons this type is not converted to an integer as PHP can only represent big integer values
as real integers on systems with a 64-bit architecture and would fall back to approximated float values otherwise which
could lead to false assumptions in applications.

Not all of the database vendors support unsigned integers, so such an assumption might not be propagated to the
database.

Decimal types

Types that map numeric data with fractions.

decimal

Maps and converts numeric data with fixed-point precision. If you need an exact precision for numbers with fractions,
you should consider using this type. Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

Note: For compatibility reasons this type is not converted to a double as PHP can only preserve the precision to a
certain degree. Otherwise it approximates precision which can lead to false assumptions in applications.

float

Maps and converts numeric data with floating-point precision. If you only need an approximate precision for numbers
with fractions, you should consider using this type. Values retrieved from the database are always converted to PHP’s
float/double type or null if no data is present.

36 Chapter 8. Types

Doctrine DBAL Documentation, Release 2.1.0

8.1.2 String types

Types that map string data such as character and binary text.

Character string types

Types that map string data of letters, numbers, and other symbols.

string

Maps and converts string data with a maximum length. If you know that the data to be stored always fits into the
specified length, you should consider using this type. Values retrieved from the database are always converted to
PHP’s string type or null if no data is present.

Note: Database vendors have different limits for the maximum length of a varying string. Doctrine internally maps
the string type to the vendor’s text type if the maximum allowed length is exceeded. This can lead to type
inconsistencies when reverse engineering the type from the database.

text

Maps and converts string data without a maximum length. If you don’t know the maximum length of the data to be
stored, you should consider using this type. Values retrieved from the database are always converted to PHP’s string
type or null if no data is present.

guid

Maps and converts a “Globally Unique Identifier”. If you want to store a GUID, you should consider using this type,
as some database vendors have a native data type for this kind of data which offers the most efficient way to store it.
For vendors that do not support this type natively, this type is mapped to the string type internally. Values retrieved
from the database are always converted to PHP’s string type or null if no data is present.

Binary string types

Types that map binary string data including images and other types of information that are not interpreted by the
database. If you know that the data to be stored always is in binary format, you should consider using one of these
types in favour of character string types, as it offers the most efficient way to store it.

binary

Maps and converts binary string data with a maximum length. If you know that the data to be stored always fits into
the specified length, you should consider using this type. Values retrieved from the database are always converted to
PHP’s resource type or null if no data is present.

Note: Database vendors have different limits for the maximum length of a varying binary string. Doctrine internally
maps the binary type to the vendor’s blob type if the maximum allowed length is exceeded. This can lead to type
inconsistencies when reverse engineering the type from the database.

8.1. Reference 37

Doctrine DBAL Documentation, Release 2.1.0

blob

Maps and converts binary string data without a maximum length. If you don’t know the maximum length of the data
to be stored, you should consider using this type. Values retrieved from the database are always converted to PHP’s
resource type or null if no data is present.

8.1.3 Bit types

Types that map bit data such as boolean values.

boolean

Maps and converts boolean data. If you know that the data to be stored always is a boolean (true or false), you
should consider using this type. Values retrieved from the database are always converted to PHP’s boolean type or
null if no data is present.

Note: As most of the database vendors do not have a native boolean type, this type silently falls back to the smallest
possible integer or bit data type if necessary to ensure the least possible data storage requirements are met.

8.1.4 Date and time types

Types that map date, time and timezone related values such as date only, date and time, date, time and timezone or
time only.

date

Maps and converts date data without time and timezone information. If you know that the data to be stored always
only needs to be a date without time and timezone information, you should consider using this type. Values retrieved
from the database are always converted to PHP’s \DateTime object or null if no data is present.

datetime

Maps and converts date and time data without timezone information. If you know that the data to be stored always only
needs to be a date with time but without timezone information, you should consider using this type. Values retrieved
from the database are always converted to PHP’s \DateTime object or null if no data is present.

Warning: Before 2.5 this type always required a specific format, defined in
$platform->getDateTimeFormatString(), which could cause quite some troubles on platforms
that had various microtime precision formats. Starting with 2.5 whenever the parsing of a date fails with the
predefined platform format, the date_create() function will be used to parse the date.
This could cause some troubles when your date format is weird and not parsed correctly by date_create(),
however since databases are rather strict on dates there should be no problem.

datetimetz

Maps and converts date with time and timezone information data. If you know that the data to be stored always
contains date, time and timezone information, you should consider using this type. Values retrieved from the database
are always converted to PHP’s \DateTime object or null if no data is present.

38 Chapter 8. Types

Doctrine DBAL Documentation, Release 2.1.0

time

Maps and converts time data without date and timezone information. If you know that the data to be stored only needs
to be a time without date, time and timezone information, you should consider using this type. Values retrieved from
the database are always converted to PHP’s \DateTime object or null if no data is present.

Note: See the Known Vendor Issue section for details about the different handling of microseconds and timezones
across all the different vendors.

Warning: All date types assume that you are exclusively using the default timezone set by
date_default_timezone_set() or by the php.ini configuration date.timezone.
If you need specific timezone handling you have to handle this in your domain, converting all the values back and
forth from UTC.

8.1.5 Array types

Types that map array data in different variations such as simple arrays, real arrays or JSON format arrays.

array

Maps and converts array data based on PHP serialization. If you need to store an exact representation of your array
data, you should consider using this type as it uses serialization to represent an exact copy of your array as string in
the database. Values retrieved from the database are always converted to PHP’s array type using deserialization or
null if no data is present.

Note: This type will always be mapped to the database vendor’s text type internally as there is no way of storing a
PHP array representation natively in the database. Furthermore this type requires a SQL column comment hint so that
it can be reverse engineered from the database. Doctrine cannot map back this type properly on vendors not supporting
column comments and will fall back to text type instead.

simple_array

Maps and converts array data based on PHP comma delimited imploding and exploding. If you know that the data to
be stored always is a scalar value based one-dimensional array, you should consider using this type as it uses simple
PHP imploding and exploding techniques to serialize and deserialize your data. Values retrieved from the database are
always converted to PHP’s array type using comma delimited explode() or null if no data is present.

Note: This type will always be mapped to the database vendor’s text type internally as there is no way of storing a
PHP array representation natively in the database. Furthermore this type requires a SQL column comment hint so that
it can be reverse engineered from the database. Doctrine cannot map back this type properly on vendors not supporting
column comments and will fall back to text type instead.

Warning: You should never rely on a specific PHP type like boolean, integer, float or null when
retrieving values from the database as the explode() deserialization technique used by this type converts every
single array item to string. This basically means that every array item other than string will loose its type
awareness.

8.1. Reference 39

http://docs.php.net/manual/en/function.date-default-timezone-set.php

Doctrine DBAL Documentation, Release 2.1.0

json_array

Maps and converts array data based on PHP’s JSON encoding functions. If you know that the data to be stored always
is in a valid UTF-8 encoded JSON format string, you should consider using this type. Values retrieved from the
database are always converted to PHP’s array type using PHP’s json_decode() function.

Note: Some vendors have a native JSON type and Doctrine will use it if possible and otherwise silently fall back to
the vendor’s text type to ensure the most efficient storage requirements. If the vendor does not have a native JSON
type, this type requires a SQL column comment hint so that it can be reverse engineered from the database. Doctrine
cannot map back this type properly on vendors not supporting column comments and will fall back to text type
instead.

8.1.6 Object types

Types that map to objects such as POPOs.

object

Maps and converts object data based on PHP serialization. If you need to store an exact representation of your object
data, you should consider using this type as it uses serialization to represent an exact copy of your object as string in
the database. Values retrieved from the database are always converted to PHP’s object type using deserialization or
null if no data is present.

Note: This type will always be mapped to the database vendor’s text type internally as there is no way of storing
a PHP object representation natively in the database. Furthermore this type requires a SQL column comment hint
so that it can be reverse engineered from the database. Doctrine cannot map back this type properly on vendors not
supporting column comments and will fall back to text type instead.

Warning: Because the build-in text type of PostgreSQL does not support NULL bytes, the object type
will cause deserialization errors on PostgreSQL. A workaround is to serialize()/unserialize() and
base64_encode()/base64_decode() PHP objects and store them into a text field manually.

8.2 Mapping Matrix

The following table shows an overview of Doctrine’s type abstraction. The matrix contains the mapping information
for how a specific Doctrine type is mapped to the database and back to PHP. Please also notice the mapping specific
footnotes for additional information.

Doctrine PHP Database vendor
Name Version Type

smallint integer

MySQL all SMALLINT UNSIGNED 1 AUTO_INCREMENT 2

Drizzle all INT UNSIGNED 10 AUTO_INCREMENT 11

PostgreSQL all SMALLINT
Oracle all NUMBER(5)
SQL Server all SMALLINT IDENTITY 11

SQL Anywhere all UNSIGNED 10 SMALLINT IDENTITY 11

Continued on next page

1 Used if unsigned attribute is set to true in the column definition (default false).
2 Used if autoincrement attribute is set to true in the column definition (default false).

40 Chapter 8. Types

Doctrine DBAL Documentation, Release 2.1.0

Table 8.1 – continued from previous page

Doctrine PHP Database vendor
Name Version Type
SQLite all INTEGER 3

integer integer

MySQL
all INT UNSIGNED 10 AUTO_INCREMENT 11

Drizzle

PostgreSQL all
INT 4

SERIAL 11

Oracle all NUMBER(10)
SQL Server all INT IDENTITY 11

SQL Anywhere all UNSIGNED 10 INT IDENTITY 11

SQLite all INTEGER 16

bigint string 5

MySQL
all BIGINT UNSIGNED 10 AUTO_INCREMENT 11

Drizzle

PostgreSQL all
BIGINT 12

BIGSERIAL 11

Oracle all NUMBER(20)
SQL Server all BIGINT IDENTITY 11

SQL Anywhere all UNSIGNED 10 BIGINT IDENTITY 11

SQLite all INTEGER 16

decimal 6 string 7

MySQL

all NUMERIC(p, s)

PostgreSQL
Oracle
SQL Server
SQL Anywhere
SQLite
Drizzle

float float

MySQL

all DOUBLE PRECISION

PostgreSQL
Oracle
SQL Server
SQL Anywhere
SQLite
Drizzle

string 8 9 string

MySQL

all
VARCHAR(n) 10

PostgreSQL
SQL Anywhere

CHAR(n) 11
SQLite
Drizzle all VARCHAR(n)

Oracle all
VARCHAR2(n) 3

CHAR(n) 4

SQL Server all
NVARCHAR(n) 3

NCHAR(n) 4

text string

MySQL all

TINYTEXT 12

TEXT 13

MEDIUMTEXT 14

Continued on next page

3 Cannot be safely reverse engineered to the same Doctrine type as the vendor does not have a native distinct data type for this mapping. Using
this type with this vendor can therefore have implications on schema comparison (online vs offline schema) and PHP type safety (data conversion
from database to PHP value) because it silently falls back to its appropriate Doctrine type.

4 Chosen if the column definition has the autoincrement attribute set to false (default).
12 Chosen if the column length is less or equal to 2 ^ 8 - 1 = 255.
13 Chosen if the column length is less or equal to 2 ^ 16 - 1 = 65535.
14 Chosen if the column length is less or equal to 2 ^ 24 - 1 = 16777215.

8.2. Mapping Matrix 41

Doctrine DBAL Documentation, Release 2.1.0

Table 8.1 – continued from previous page

Doctrine PHP Database vendor
Name Version Type

LONGTEXT 15

PostgreSQL
all TEXTSQL Anywhere

Drizzle
Oracle

all CLOBSQLite
SQL Server all VARCHAR(MAX)

**guid ** string

MySQL

all VARCHAR(255) 16Oracle
SQLite
Drizzle
SQL Server

all UNIQUEIDENTIFIERSQL Anywhere
PostgreSQL all UUID

binary 2 17 resource

MySQL

all
VARBINARY(n) 3

SQL Server
BINARY(n) 4

SQL Anywhere
Drizzle all VARBINARY(n)
Oracle all RAW(n)
PostgreSQL all BYTEA 16

SQLite all BLOB 16

blob resource

MySQL all

TINYBLOB 17

BLOB 18

MEDIUMBLOB 19

LONGBLOB 20

Oracle
all BLOBSQLite

Drizzle
SQL Server all VARBINARY(MAX)
SQL Anywhere all LONG BINARY
PostgreSQL all BYTEA

boolean boolean

MySQL all TINYINT(1)
PostgreSQL

all BOOLEANSQLite
Drizzle
SQL Server

all BITSQL Anywhere
Oracle all NUMBER(1)

date \DateTime

MySQL

all
DATE

PostgreSQL
Oracle
SQL Anywhere
SQLite
Drizzle

SQL Server >= 2008
< 2008 DATETIME 16

Continued on next page

15 Chosen if the column length is less or equal to 2 ^ 32 - 1 = 4294967295 or empty.

42 Chapter 8. Types

Doctrine DBAL Documentation, Release 2.1.0

Table 8.1 – continued from previous page

Doctrine PHP Database vendor
Name Version Type

datetime \DateTime

MySQL
all

DATETIME 18

Drizzle TIMESTAMP 19

SQL Server
all DATETIMESQL Anywhere

SQLite
PostgreSQL all TIMESTAMP(0) WITHOUT TIME ZONE
Oracle all TIMESTAMP(0)

datetimetz \DateTime

MySQL
all

DATETIME 20 16Drizzle
SQLite

SQL Server < 2008
>= 2008 DATETIMEOFFSET(6)

PostgreSQL
all TIMESTAMP(0) WITH TIME ZONEOracle

SQL Anywhere < 12 DATETIME 15 16

>= 12 TIMESTAMP WITH TIME ZONE

time \DateTime

MySQL

all TIME
SQL Anywhere
SQLite
Drizzle
PostgreSQL all TIME(0) WITHOUT TIME ZONE
Oracle all DATE 16

SQL Server < 2008 DATETIME 16

>= 2008 TIME(0)
array 1

array

MySQL all

TINYTEXT 17

simple array 1

TEXT 18

MEDIUMTEXT 19

LONGTEXT 20

PostgreSQL
all TEXTSQL Anywhere

Drizzle
Oracle

all CLOBSQLite
SQL Server all VARCHAR(MAX)

json_array array

MySQL 1 all

TINYTEXT 17

TEXT 18

MEDIUMTEXT 19

LONGTEXT 20

PostgreSQL >= 9.2 JSON
< 9.2

TEXT 1SQL Anywhere
allDrizzle

Oracle
all CLOB 1

SQLite
SQL Server all VARCHAR(MAX) 1

object 1 object

MySQL all

TINYTEXT 17

Continued on next page

18 Chosen if the column definition not contains the version option inside the platformOptions attribute array or is set to false which marks it
as a non-locking information column.

19 Chosen if the column definition contains the version option inside the platformOptions attribute array and is set to true which marks it as a
locking information column.

8.2. Mapping Matrix 43

Doctrine DBAL Documentation, Release 2.1.0

Table 8.1 – continued from previous page

Doctrine PHP Database vendor
Name Version Type

TEXT 18

MEDIUMTEXT 19

LONGTEXT 20

PostgreSQL
all TEXTSQL Anywhere

Drizzle
Oracle

all CLOBSQLite
SQL Server all VARCHAR(MAX)

8.3 Detection of Database Types

When calling table inspection methods on your connections SchemaManager instance the retrieved database column
types are translated into Doctrine mapping types. Translation is necessary to allow database abstraction and metadata
comparisons for example for Migrations or the ORM SchemaTool.

Each database platform has a default mapping of database types to Doctrine types. You can inspect this mapping
for platform of your choice looking at the AbstractPlatform::initializeDoctrineTypeMappings()
implementation.

If you want to change how Doctrine maps a database type to a Doctrine\DBAL\Types\Type instance you
can use the AbstractPlatform::registerDoctrineTypeMapping($dbType, $doctrineType)
method to add new database types or overwrite existing ones.

Note: You can only map a database type to exactly one Doctrine type. Database vendors that allow to define custom
types like PostgreSql can help to overcome this issue.

8.4 Custom Mapping Types

Just redefining how database types are mapped to all the existing Doctrine types is not at all that useful. You can define
your own Doctrine Mapping Types by extending Doctrine\DBAL\Types\Type. You are required to implement
4 different methods to get this working.

See this example of how to implement a Money object in PostgreSQL. For this we create the type in PostgreSQL as:

CREATE DOMAIN MyMoney AS DECIMAL(18,3);

Now we implement our Doctrine\DBAL\Types\Type instance:

<?php
namespace My\Project\Types;

use Doctrine\DBAL\Types\Type;
use Doctrine\DBAL\Platforms\AbstractPlatform;

/**
* My custom datatype.

*/
class MoneyType extends Type
{

44 Chapter 8. Types

Doctrine DBAL Documentation, Release 2.1.0

const MONEY = 'money'; // modify to match your type name

public function getSqlDeclaration(array $fieldDeclaration, AbstractPlatform $platform)
{

return 'MyMoney';
}

public function convertToPHPValue($value, AbstractPlatform $platform)
{

return new Money($value);
}

public function convertToDatabaseValue($value, AbstractPlatform $platform)
{

return $value->toDecimal();
}

public function getName()
{

return self::MONEY;
}

}

The job of Doctrine-DBAL is to transform your type into SQL declaration. You can modify the SQL declaration
Doctrine will produce. At first, you must to enable this feature by overriding the canRequireSQLConversion method:

<?php
public function canRequireSQLConversion()
{

return true;
}

Then you override the methods convertToPhpValueSQL and convertToDatabaseValueSQL :

<?php
public function convertToPHPValueSQL($sqlExpr, $platform)
{

return 'MyMoneyFunction(\''.$sqlExpr.'\') ';
}

public function convertToDatabaseValueSQL($sqlExpr, AbstractPlatform $platform)
{

return 'MyFunction('.$sqlExpr.')';
}

Now we have to register this type with the Doctrine Type system and hook it into the database platform:

<?php
Type::addType('money', 'My\Project\Types\MoneyType');
$conn->getDatabasePlatform()->registerDoctrineTypeMapping('MyMoney', 'money');

This would allow to use a money type in the ORM for example and have Doctrine automatically convert it back and
forth to the database.

8.4. Custom Mapping Types 45

Doctrine DBAL Documentation, Release 2.1.0

46 Chapter 8. Types

CHAPTER 9

Schema-Manager

A Schema Manager instance helps you with the abstraction of the generation of SQL assets such as Tables, Sequences,
Foreign Keys and Indexes.

To retrieve the SchemaManager for your connection you can use the getSchemaManager() method:

<?php
$sm = $conn->getSchemaManager();

Now with the SchemaManager instance in $sm you can use the available methods to learn about your database
schema:

Note: Parameters containing identifiers passed to the SchemaManager methods are NOT quoted automatically!
Identifier quoting is really difficult to do manually in a consistent way across different databases. You have to manually
quote the identifiers when you accept data from user- or other sources not under your control.

9.1 listDatabases()

Retrieve an array of databases on the configured connection:

<?php
$databases = $sm->listDatabases();

9.2 listSequences()

Retrieve an array of Doctrine\DBAL\Schema\Sequence instances that exist for a database:

<?php
$sequences = $sm->listSequences();

Or if you want to manually specify a database name:

<?php
$sequences = $sm->listSequences('dbname');

Now you can loop over the array inspecting each sequence object:

47

Doctrine DBAL Documentation, Release 2.1.0

<?php
foreach ($sequences as $sequence) {

echo $sequence->getName() . "\n";
}

9.3 listTableColumns()

Retrieve an array of Doctrine\DBAL\Schema\Column instances that exist for the given table:

<?php
$columns = $sm->listTableColumns('user');

Now you can loop over the array inspecting each column object:

<?php
foreach ($columns as $column) {

echo $column->getName() . ': ' . $column->getType() . "\n";
}

9.4 listTableDetails()

Retrieve a single Doctrine\DBAL\Schema\Table instance that encapsulates all the details of the given table:

<?php
$table = $sm->listTableDetails('user');

Now you can call methods on the table to manipulate the in memory schema for that table. For example we can add a
new column:

<?php
$table->addColumn('email_address', 'string');

9.5 listTableForeignKeys()

Retrieve an array of Doctrine\DBAL\Schema\ForeignKeyConstraint instances that exist for the given
table:

<?php
$foreignKeys = $sm->listTableForeignKeys('user');

Now you can loop over the array inspecting each foreign key object:

<?php
foreach ($foreignKeys as $foreignKey) {

echo $foreignKey->getName() . ': ' . $foreignKey->getLocalTableName() ."\n";
}

9.6 listTableIndexes()

Retrieve an array of Doctrine\DBAL\Schema\Index instances that exist for the given table:

48 Chapter 9. Schema-Manager

Doctrine DBAL Documentation, Release 2.1.0

<?php
$indexes = $sm->listTableIndexes('user');

Now you can loop over the array inspecting each index object:

<?php
foreach ($indexes as $index) {

echo $index->getName() . ': ' . ($index->isUnique() ? 'unique' : 'not unique') . "\n";
}

9.7 listTables()

Retrieve an array of Doctrine\DBAL\Schema\Table instances that exist in the connections database:

<?php
$tables = $sm->listTables();

Each Doctrine\DBAl\Schema\Table instance is populated with information provided by all the above meth-
ods. So it encapsulates an array of Doctrine\DBAL\Schema\Column instances that can be retrieved with the
getColumns() method:

<?php
foreach ($tables as $table) {

echo $table->getName() . " columns:\n\n";
foreach ($table->getColumns() as $column) {

echo ' - ' . $column->getName() . "\n";
}

}

9.8 listViews()

Retrieve an array of Doctrine\DBAL\Schema\View instances that exist in the connections database:

<?php
$views = $sm->listViews();

Now you can loop over the array inspecting each view object:

<?php
foreach ($views as $view) {

echo $view->getName() . ': ' . $view->getSql() . "\n";
}

9.9 createSchema()

For a complete representation of the current database you can use the createSchema() method which returns
an instance of Doctrine\DBAL\Schema\Schema, which you can use in conjunction with the SchemaTool or
Schema Comparator.

<?php
$fromSchema = $sm->createSchema();

9.7. listTables() 49

Doctrine DBAL Documentation, Release 2.1.0

Now we can clone the $fromSchema to $toSchema and drop a table:

<?php
$toSchema = clone $fromSchema;
$toSchema->dropTable('user');

Now we can compare the two schema instances in order to calculate the differences between them and return the SQL
required to make the changes on the database:

<?php
$sql = $fromSchema->getMigrateToSql($toSchema, $conn->getDatabasePlatform());

The $sql array should give you a SQL query to drop the user table:

<?php
print_r($sql);

/*
array(

0 => 'DROP TABLE user'
)

*/

50 Chapter 9. Schema-Manager

CHAPTER 10

Schema-Representation

Doctrine has a very powerful abstraction of database schemas. It offers an object-oriented representation of a database
schema with support for all the details of Tables, Sequences, Indexes and Foreign Keys. These Schema instances
generate a representation that is equal for all the supported platforms. Internally this functionality is used by the
ORM Schema Tool to offer you create, drop and update database schema methods from your Doctrine ORM Metadata
model. Up to very specific functionality of your database system this allows you to generate SQL code that makes
your Domain model work.

You will be pleased to hear, that Schema representation is completly decoupled from the Doctrine ORM though, that
is you can also use it in any other project to implement database migrations or for SQL schema generation for any
metadata model that your application has. You can easily generate a Schema, as a simple example shows:

<?php
$schema = new \Doctrine\DBAL\Schema\Schema();
$myTable = $schema->createTable("my_table");
$myTable->addColumn("id", "integer", array("unsigned" => true));
$myTable->addColumn("username", "string", array("length" => 32));
$myTable->setPrimaryKey(array("id"));
$myTable->addUniqueIndex(array("username"));
$schema->createSequence("my_table_seq");

$myForeign = $schema->createTable("my_foreign");
$myForeign->addColumn("id", "integer");
$myForeign->addColumn("user_id", "integer");
$myForeign->addForeignKeyConstraint($myTable, array("user_id"), array("id"), array("onUpdate" => "CASCADE"));

$queries = $schema->toSql($myPlatform); // get queries to create this schema.
$dropSchema = $schema->toDropSql($myPlatform); // get queries to safely delete this schema.

Now if you want to compare this schema with another schema, you can use the Comparator class to get instances of
SchemaDiff, TableDiff and ColumnDiff, as well as information about other foreign key, sequence and index
changes.

<?php
$comparator = new \Doctrine\DBAL\Schema\Comparator();
$schemaDiff = $comparator->compare($fromSchema, $toSchema);

$queries = $schemaDiff->toSql($myPlatform); // queries to get from one to another schema.
$saveQueries = $schemaDiff->toSaveSql($myPlatform);

The Save Diff mode is a specific mode that prevents the deletion of tables and sequences that might occour when
making a diff of your schema. This is often necessary when your target schema is not complete but only describes a
subset of your application.

51

Doctrine DBAL Documentation, Release 2.1.0

All methods that generate SQL queries for you make much effort to get the order of generation correct, so that no
problems will ever occour with missing links of foreign keys.

10.1 Schema Assets

A schema asset is considered any abstract atomic unit in a database such as schemas, tables, indexes, but also se-
quences, columns and even identifiers. The following chapter gives an overview of all available Doctrine 2 schema
assets with short explanations on their context and usage. All schema assets reside in the Doctrine\DBAL\Schema
namespace.

Note: This chapter is far from being completely documented.

10.1.1 Column

Represents a table column in the database schema. A column consists of a name, a type, portable options, commonly
supported options and vendors specific options.

Portable options

The following options are considered to be fully portable across all database platforms:

• notnull (boolean): Whether the column is nullable or not. Defaults to true.

• default (integer|string): The default value of the column if no value was specified. Defaults to null.

• autoincrement (boolean): Whether this column should use an autoincremented value if no value was specified.
Only applies to Doctrine’s smallint, integer and bigint types. Defaults to false.

• length (integer): The maximum length of the column. Only applies to Doctrine’s string and binary types.
Defaults to null and is evaluated to 255 in the platform.

• fixed (boolean): Whether a string or binary Doctrine type column has a fixed length. Defaults to false.

• precision (integer): The precision of a Doctrine decimal or float type column that determines the overall
maximum number of digits to be stored (including scale). Defaults to 10.

• scale (integer): The exact number of decimal digits to be stored in a Doctrine decimal or float type column.
Defaults to 0.

• customSchemaOptions (array): Additional options for the column that are supported by all vendors:

– unique (boolean): Whether to automatically add a unique constraint for the column. Defaults to false.

Common options

The following options are not completely portable but are supported by most of the vendors:

• unsigned (boolean): Whether a smallint, integer or bigint Doctrine type column should allow un-
signed values only. Supported by MySQL, SQL Anywhere and Drizzle. Defaults to false.

• comment (integer|string): The column comment. Supported by MySQL, PostgreSQL, Oracle, SQL Server,
SQL Anywhere and Drizzle. Defaults to null.

52 Chapter 10. Schema-Representation

Doctrine DBAL Documentation, Release 2.1.0

Vendor specific options

The following options are completely vendor specific and absolutely not portable:

• columnDefinition: The custom column declaration SQL snippet to use instead of the generated SQL by Doc-
trine. Defaults to null. This can useful to add vendor specific declaration information that is not evaluated by
Doctrine (such as the ZEROFILL attribute on MySQL).

• customSchemaOptions (array): Additional options for the column that are supported by some vendors but not
portable:

– charset (string): The character set to use for the column. Currently only supported on MySQL and Drizzle.

– collate (string): The collation to use for the column. Currently only supported on SQL Server.

– check (string): The check constraint clause to add to the column. Defaults to null.

10.1. Schema Assets 53

Doctrine DBAL Documentation, Release 2.1.0

54 Chapter 10. Schema-Representation

CHAPTER 11

Events

Both Doctrine\DBAL\DriverManager and Doctrine\DBAL\Connection accept an instance of
Doctrine\Common\EventManager. The EventManager has a couple of events inside the DBAL layer that
are triggered for the user to listen to.

11.1 PostConnect Event

Doctrine\DBAL\Events::postConnect is triggered right after the connection to the database is
established. It allows to specify any relevant connection specific options and gives access to the
Doctrine\DBAL\Connection instance that is responsible for the connection management via an instance of
Doctrine\DBAL\Event\ConnectionEventArgs event arguments instance.

Doctrine ships with one implementation for the “PostConnect” event:

• Doctrine\DBAL\Event\Listeners\OracleSessionInit allows to specify any number of Oracle
Session related enviroment variables that are set right after the connection is established.

You can register events by subscribing them to the EventManager instance passed to the Connection factory:

<?php
$evm = new EventManager();
$evm->addEventSubscriber(new OracleSessionInit(array(

'NLS_TIME_FORMAT' => 'HH24:MI:SS',
)));

$conn = DriverManager::getConnection($connectionParams, null, $evm);

55

Doctrine DBAL Documentation, Release 2.1.0

56 Chapter 11. Events

CHAPTER 12

Security

Allowing users of your website to communicate with a database can possibly have security implications that you
should be aware of. Databases allow very powerful commands that not every user of your website should be able to
execute. Additionally the data in your database probably contains information that should not be visible to everyone
with access to the website.

The most dangerous security problem with regard to databases is the possibility of SQL injections. An SQL injection
security hole allows an attacker to execute new or modify existing SQL statements to access information that he is not
allowed to access.

Neither Doctrine DBAL nor ORM can prevent such attacks if you are careless as a developer. This section explains to
you the problems of SQL injection and how to prevent them.

12.1 SQL Injection: Safe and Unsafe APIs for User Input

A database library naturally falls touches the class of SQL injection security vulnerabilities. You should read the
following information carefully to understand how Doctrine can and cannot help you to prevent SQL injection.

In general you should assume that APIs in Doctrine are not safe for user input. There are however some exceptions.

The following APIs are designed to be SAFE from SQL injections:

• For Doctrine\DBAL\Connection#insert($table, $values, $types),
Doctrine\DBAL\Connection#update($table, $values, $where, $types) and
Doctrine\DBAL\Connection#delete($table, $where, $types) only the array values
of $values and $where. The table name and keys of $values and $where are NOT escaped.

• Doctrine\DBAL\Query\QueryBuilder#setFirstResult($offset)

• Doctrine\DBAL\Query\QueryBuilder#setMaxResults($limit)

• Doctrine\DBAL\Platforms\AbstractPlatform#modifyLimitQuery($sql, $limit,
$offset) for the $limit and $offset parameters.

Consider ALL other APIs to be not safe for user-input:

• Query methods on the Connection

• The QueryBuilder API

• The Platforms and SchemaManager APIs to generate and execute DML/DDL SQL statements

To escape user input in those scenarios use the Connection#quote() method.

57

Doctrine DBAL Documentation, Release 2.1.0

12.2 User input in your queries

A database application necessarily requires user-input to passed to your queries. There are wrong and right ways to
do this and is very important to be very strict about this:

12.2.1 Wrong: String Concatenation

You should never ever build your queries dynamically and concatenate user-input into your SQL or DQL query. For
Example:

<?php
// Very wrong!
$sql = "SELECT * FROM users WHERE name = '" . $_GET['username']. "'";

An attacker could inject any value into the GET variable “username” to modify the query to his needs.

Although DQL is a wrapper around SQL that can prevent you from some security implications, the previous example
is also a threat to DQL queries.

<?php
// DQL is not safe against arbitrary user-input as well:
$dql = "SELECT u FROM User u WHERE u.username = '" . $_GET['username'] . "'";

In this scenario an attacker could still pass a username set to ’ OR 1 = 1 and create a valid DQL query. Although
DQL will make use of quoting functions when literals are used in a DQL statement, allowing the attacker to modify
the DQL statement with valid literals cannot be detected by the DQL parser, it is your responsibility.

12.2.2 Right: Prepared Statements

You should always use prepared statements to execute your queries. Prepared statements is a two-step procedure,
separating SQL query from the parameters. They are supported (and encouraged) for both DBAL SQL queries and for
ORM DQL queries.

Instead of using string concatenation to insert user-input into your SQL/DQL statements you just specify either place-
holders instead and then explain to the database driver which variable should be bound to which placeholder. Each
database vendor supports different placeholder styles:

• All PDO Drivers support positional (using question marks) and named placeholders (:param1, :foo, :bar).

• OCI8 only supports named parameters, but Doctrine DBAL has a thin layer around OCI8 and also allows
positional placeholders.

• Doctrine ORM DQL allows both named and positional parameters. The positional parameters however are not
just question marks, but suffixed with a number (?1, ?2, ?3, ...).

Following are examples of using prepared statements with SQL and DQL:

<?php
// SQL Prepared Statements: Positional
$sql = "SELECT * FROM users WHERE username = ?";
$stmt = $connection->prepare($sql);
$stmt->bindValue(1, $_GET['username']);
$stmt->execute();

// SQL Prepared Statements: Named
$sql = "SELECT * FROM users WHERE username = :user";
$stmt = $connection->prepare($sql);

58 Chapter 12. Security

Doctrine DBAL Documentation, Release 2.1.0

$stmt->bindValue("user", $_GET['username']);
$stmt->execute();

// DQL Prepared Statements: Positional
$dql = "SELECT u FROM User u WHERE u.username = ?1";
$query = $em->createQuery($dql);
$query->setParameter(1, $_GET['username']);
$data = $query->getResult();

// DQL Prepared Statements: Named
$dql = "SELECT u FROM User u WHERE u.username = :name";
$query = $em->createQuery($dql);
$query->setParameter("name", $_GET['username']);
$data = $query->getResult();

You can see this is a bit more tedious to write, but this is the only way to write secure queries. If you are using just the
DBAL there are also helper methods which simplify the usage quite alot:

<?php
// bind parameters and execute query at once.
$sql = "SELECT * FROM users WHERE username = ?";
$stmt = $connection->executeQuery($sql, array($_GET['username']));

There is also executeUpdate which does not return a statement but the number of affected rows.

Besides binding parameters you can also pass the type of the variable. This allows Doctrine or the underyling vendor
to not only escape but also cast the value to the correct type. See the docs on querying and DQL in the respective
chapters for more information.

12.2.3 Right: Quoting/Escaping values

Although previously we said string concatenation is wrong, there is a way to do it correctly using the
Connection#quote method:

<?php
// Parameter quoting
$sql = "SELECT * FROM users WHERE name = " . $connection->quote($_GET['username'], \PDO::PARAM_STR);

This method is only available for SQL, not for DQL. For DQL it is always encouraged to use prepared statements not
only for security, but also for caching reasons.

12.3 Non-ASCII compatible Charsets in MySQL

Up until PHP 5.3.6 PDO has a security problem when using non ascii compatible charsets. Even if specifying the
charset using “SET NAMES”, emulated prepared statements and PDO#quote could not reliably escape values, open-
ing up to potential SQL injections. If you are running PHP 5.3.6 you can solve this issue by passing the driver option
“charset” to Doctrine PDO MySQL driver. Using SET NAMES does not suffice!

12.3. Non-ASCII compatible Charsets in MySQL 59

Doctrine DBAL Documentation, Release 2.1.0

60 Chapter 12. Security

CHAPTER 13

Sharding

Note: The sharding extension is currently in transition from a seperate Project into DBAL. Class names may differ.

Starting with 2.3 Doctrine DBAL contains some functionality to simplify the development of horizontally sharded
applications. In this first release it contains a ShardManager interface. This interface allows to programatically
select a shard to send queries to. At the moment there are no functionalities yet to dynamically pick a shard based on
ID, query or database row yet. That means the sharding extension is primarily suited for:

• multi-tenant applications or

• applications with completely separated datasets (example: weather data).

Both kind of application will work with both DBAL and ORM.

Note: Horizontal sharding is an evasive architecture that will affect your application code and using this extension to
Doctrine will not make it work “magically”.

You have to understand and integrate the following drawbacks:

• Pre-generation of IDs that are unique across all shards required.

• No transaction support across shards.

• No foreign key support across shards (meaning no “real” relations).

• Very complex (or impossible) to query aggregates across shards.

• Denormalization: Composite keys required where normalized non-sharded db schemas don’t need them.

• Schema Operations have to be done on all shards.

The primary questions in a sharding architecture are:

• Where is my data located?

• Where should I save this new data to find it later?

To answer these questions you generally have to craft a function that will tell you for a given ID, on which shard the
data for this ID is located. To simplify this approach you will generally just pick a table which is the root of a set of
related data and decide for the IDs of this table. All the related data that belong to this table are saved on the same
shard.

Take for example a multi-user blog application with the following tables:

• Blog [id, name]

• Post [id, blog_id, subject, body, author_id]

61

Doctrine DBAL Documentation, Release 2.1.0

• Comment [id, post_id, comment, author_id]

• User [id, username]

A sensible sharding architecture will split the application by blog. That means all the data for a particular blog will be
on a single shard and scaling is done by putting the amount of blogs on many different database servers.

Now users can post and comment on different blogs that reside on different shards. This makes the database schema
above slightly tricky, because both author_id columns cannot have foreign keys to User (id). Instead the User table is
located in an entirely different “dimension” of the application in terms of the sharding architecture.

To simplify working with this kind of multi-dimensional database schema, you can replace the author_ids with some-
thing more “meaningful”, for example the e-mail address of the users if that is always known. The “user” table can
then be separated from the database schema above and put on a second horizontally scaled sharding architecture.

As you can see, even with just the four tables above, sharding actually becomes quite complex to think about.

The rest of this section discusses Doctrine sharding functionality in technical detail.

13.1 ID Generation

To solve the issue of unique ID-generation across all shards are several approaches you should evaluate:

13.1.1 Use GUID/UUIDs

The most simple ID-generation mechanism for sharding are universally unique identifiers. These are 16-byte (128-bit)
numbers that are guaranteed to be unique across different servers. You can read up on UUIDs on Wikipedia.

The drawback of UUIDs is the segmentation they cause on indexes. Because UUIDs are not sequentially generated,
they can have negative impact on index access performance. Additionally they are much bigger than numerical primary
keys (which are normally 4-bytes in length).

At the moment Doctrine DBAL drivers MySQL and SQL Server support the generation of UUID/GUIDs. You can
use the following bit of code to generate them across platforms:

<?php
use Doctrine\DBAL\DriverManager;

$conn = DriverManager::getConnection(/**..**/);
$guid = $conn->fetchColumn('SELECT ' . $conn->getDatabasePlatform()->getGuidExpression());

$conn->insert("my_table", array("id" => $guid, "foo" => "bar"));

In your application you should hide this details in Id-Generation services:

<?php
namespace MyApplication;

class IdGenerationService
{

private $conn;

public function generateCustomerId()
{

return $this->conn->fetchColumn('SELECT ' .
$this->conn->getDatabasePlatform()->getGuidExpression()

);

62 Chapter 13. Sharding

http://en.wikipedia.org/wiki/Universally_unique_identifier

Doctrine DBAL Documentation, Release 2.1.0

}
}

A good starting point to read up on GUIDs (vs numerical ids) is this blog post Coding Horror: Primary Keys: IDs vs
GUIDs.

13.1.2 Table Generator

In some scenarios there is no way around a numerical, automatically incrementing id. The way Auto incrementing IDs
are implemented in MySQL and SQL Server however is completely unsuitable for sharding. Remember in a sharding
architecture you have to know where the row for a specific ID is located and IDs have to be globally unique across all
servers. Auto-Increment Primary Keys are missing both properties.

To get around this issue you can use the so-called “table-generator” strategy. In this case you define a single database
that is responsible for the generation of auto-incremented ids. You create a table on this database and through the use
of locking create new sequential ids.

There are three important drawbacks to this strategy:

• Single point of failure

• Bottleneck when application is write-heavy

• A second independent database connection is needed to guarantee transaction safety.

If you can live with this drawbacks then you can use table-generation with the following code in Doctrine:

<?php
use Doctrine\DBAL\DriverManager;
use Doctrine\DBAL\Id\TableGenerator;

$conn = DriverManager::getConnection(/**..**); // connection 1

// creating the TableGenerator automatically opens a second connection.
$tableGenerator = new TableGenerator($conn, "sequences_tbl_name");

$id1 = $tableGenerator->nextValue("sequence_name1");
$id2 = $tableGenerator->nextValue("sequence_name2");

The table generator obviously needs a table to work. The schema of this table is described in the TableGenerator
class-docblock. Alternatively you can use the Doctrine\DBAL\Id\TableGeneratorSchemaVisitor and
apply it to your Doctrine\DBAL\Schema\Schema instance. It will automatically add the required sequence
table.

13.1.3 Natural Identifiers

Sometimes you are lucky and your application data-model comes with a natural id. This is mostly the case for
applications who get their IDs generated somewhere else (exogeneous ID-generation) or that work with temporal data.
In that case you can just define the natural primary key and shard your application based on this data.

13.2 Transactions

Transactions in sharding can only work for data that is located on a single shard. If you need transactions in your
sharding architecture then you have to make sure that the data updated during a transaction is located on a single
shard.

13.2. Transactions 63

http://www.codinghorror.com/blog/2007/03/primary-keys-ids-versus-guids.html
http://www.codinghorror.com/blog/2007/03/primary-keys-ids-versus-guids.html

Doctrine DBAL Documentation, Release 2.1.0

13.3 Foreign Keys

Since you cannot create foreign keys between remote database servers, in a sharding architecture you should put the
data on a shard that belongs to each other. But even if you can isolate most of the rows on a single shard there may exist
relations between tables that exist on different shards. In this case your application should be aware of the potential
inconsistencies and handle them graciously.

13.4 Complex Queries

GROUP BY, DISTINCT and ORDER BY are clauses that cannot be easily used in a sharding architecture. If you have
to execute these queries against multiple shards then you cannot just append the different results to each other.

You have to be aware of this problem and design your queries accordingly or shard the data in a way that you never
have to query multiple shards to calculate a result.

13.5 ShardManager Interface

The central API of the sharding extension is the ShardManager interface. It contains two different groups of
functions with regard to sharding.

First, it contains the Shard Selection API. You can pick a shard based on a so-called “distribution-value” or reset the
connection to the “global” shard, a necessary database that often contains heavily cached, sharding independent data
such as meta tables or the “user/tenant” table.

<?php
use Doctrine\DBAL\DriverManager;
use Doctrine\Shards\DBAL\SQLAzure\SQLAzureShardManager;

$conn = DriverManager::getConnection(array(
'sharding' => array(

'federationName' => 'my_database',
'distributionKey' => 'customer_id',

)
));
$shardManager = new SQLAzureShardManager($conn);

$currentCustomerId = 1234;
$shardManager->selectShard($currentCustomerId);
// all queries after this call hit the shard
// where customer with id 1234 is on.

$shardManager->selectGlobal();
// the global database is selected.

To access the currently selected distribution value use the following API method:

<?php
$value = $shardManager->getCurrentDistributionValue();

The shard manager will prevent you switching shards when a transaction is open. This is especially important when
using sharding with the ORM. Because the ORM uses a single transaction during the flush-operation this means that
you can only ever use one EntityManager with data from a single shard.

64 Chapter 13. Sharding

Doctrine DBAL Documentation, Release 2.1.0

The second API is the “fan-out” query API. This allows you to execute queries against ALL shards. The order of
the results of this operation is undefined, that means your query has to return the data in a way that works for the
application, or you have to sort the data in the application.

<?php
$sql = "SELECT * FROM customers";
$rows = $shardManager->queryAll($sql, $params);

13.6 Schema Operations: SchemaSynchronizer Interface

Schema Operations in a sharding architecture are tricky. You have to perform them on all databases instances (shards)
at the same time. Also Doctrine has problems with this in particular as you cannot generate an SQL file with changes
on any development machine anymore and apply this on production. The required changes depend on the amount of
shards.

To allow the Doctrine Schema API operations on a sharding architecture we performed a refactored from code inside
ORM Doctrine\ORM\Tools\SchemaTool class and extracted the code for operations on Schema instances
into a new Doctrine\Shards\DBAL\SchemaSynchronizer interface.

Every sharding implementation can implement this interface and allow schema operations to take part on multiple
shards.

13.7 SQL Azure Federations

Doctrine Shards ships with a custom implementation for Microsoft SQL Azure. The Azure platform provides a native
sharding functionality. In SQL Azure the sharding functionality is called Federations. This functionality applies the
following restrictions (in line with the ones listed above):

• IDENTITY columns are not allowed on sharded tables (federated tables)

• Each table may only have exactly one clustered index and this index has to have the distribution key/sharding-id
as one column.

• Every unique index (or primary key) has to contain the distribution-key/sharding-id.

Especially the requirements 2 and 3 prevent normalized database schemas. You have to put the distribution key on
every sharded table, which can affect your application code quite a bit. This may lead to the creation of composite
keys where you normally wouldn’t need them.

The benefit of SQL Azure Federations is that they implement all the shard-picking logic on the server. You only have
to make use of the USE FEDERATION statement. You don’t have to maintain a list of all the shards inside your
application and more importantly, resizing shards is done transparently on the server.

Features of SQL Azure are:

• Central server to log into federations architecture. No need to know all connection details of all shards.

• Database level operation to split shards, taking away the tediousness of this operation for application developers.

• A global tablespace that can contain global data to all shards.

• One or many different federations (this library only supports working with one)

• Sharded or non-sharded tables inside federations

• Allows filtering SELECT queries on the database based on the selected sharding key value. This allows to
implement sharded Multi-Tenant Apps very easily.

13.6. Schema Operations: SchemaSynchronizer Interface 65

Doctrine DBAL Documentation, Release 2.1.0

To setup an SQL Azure ShardManager use the following code:

<?php
use Doctrine\DBAL\DriverManager;
use Doctrine\Shards\DBAL\SQLAzure\SQLAzureShardManager;

$conn = DriverManager::getConnection(array(
'dbname' => 'my_database',
'host' => 'tcp:dbname.windows.net',
'user' => 'user@dbname',
'password' => 'XXX',
'sharding' => array(

'federationName' => 'my_federation',
'distributionKey' => 'customer_id',
'distributionType' => 'integer',

)
));
$shardManager = new SQLAzureShardManager($conn);

Currently you are limited to one federation in your application.

You can inspect all the currently known shards on SQL Azure using the ShardManager#getShards() function:

<?php
foreach ($shardManager->getShards() as $shard) {

echo $shard['id'] . " " . $shard['rangeLow'] . " - " . $shard['rangeHigh'];
}

13.7.1 Schema Operations

Schema Operations on SQL Azure Federations are possible with the SQLAzureSchemaSynchronizer. You can
instantiate this from your code:

<?php
use Doctrine\Shards\DBAL\SQLAzure\SQLAzureSchemaSynchronizer;

$synchronizer = new SQLAzureSchemaSynchronizer($conn, $shardManager);

You can use the API such as createSchema($schema) then and it will be distributed across all shards. The
assumptions are:

• Using SchemaSynchronizer#createSchema() assumes the database is empty. The federation is cre-
ated during this operation.

• Using SchemaSynchronizer#updateSchema() assumes the database and the federation exists. All
shards of the federation are iterated and update is applied to all shards consecutively.

For a schema with tables in the global or federated sub-schema you have to use the Schema API to mark tables:

<?php
use Doctrine\DBAL\Schema\Schema;

$schema = new Schema();

// no options set, this table will be on the federation root
$users = $schema->createTable('Users');
//...

// marked as sharded, but no distribution column given:

66 Chapter 13. Sharding

Doctrine DBAL Documentation, Release 2.1.0

// non-federated table inside the federation
$products = $schema->createTable('Products');
$products->addOption('azure.federated', true);
//...

// shared + distribution column:
// federated table
$customers = $schema->createTable('Customers');
$customers->addColumn('CustomerID', 'integer');
//...
$customers->addOption('azure.federated', true);
$customers->addOption('azure.federatedOnColumnName', 'CustomerID');

13.7.2 SQLAzure Filtering

SQL Azure comes with a powerful filtering feature, that allows you to automatically implement a multi-tenant ap-
plication for a formerly single-tenant application. The restriction to make this work is that your application does not
work with IDENTITY columns.

Normally when you select a shard using ShardManager#selectShard() any query executed against this
shard will return data from ALL the tenants located on this shard. With the “FILTERING=ON” flag on the USE
FEDERATION query however SQL Azure can automatically filter all SELECT queries with the chosen distribution
value. Additionally you can automatically set the currently selected distribution value in every INSERT statement us-
ing a function for this value as the DEFAULT part of the column. If you are using GUIDs for every row then UPDATE
and DELETE statements using only GUIDs will work out perfectly as well, as they are by definition for unique rows.
This feature allows you to build multi-tenant applications, even though they were not originally designed that way.

To enable filtering you can use the SQLAzureShardManager#setFilteringEnabled() method. This
method is not part of the interface. You can also set a default value for filtering by passing it as the “shard-
ing.filteringEnabled” parameter to DriverManager#getConnection().

13.8 Generic SQL Sharding Support

Besides the custom SQL Azure support there is a generic implementation that works with all database drivers. It
requires to specify all database connections and will switch between the different connections under the hood when
using the ShardManager API. This is also the biggest drawback of this approach, since fan-out queries need to
connect to all databases in a single request.

See the configuration for a sample sharding connection:

<?php
use Doctrine\DBAL\DriverManager;

$conn = DriverManager::getConnection(array(
'wrapperClass' => 'Doctrine\Shards\DBAL\PoolingShardConnection',
'driver' => 'pdo_sqlite',
'global' => array('memory' => true),
'shards' => array(

array('id' => 1, 'memory' => true),
array('id' => 2, 'memory' => true),

),
'shardChoser' => 'Doctrine\Shards\DBAL\ShardChoser\MultiTenantShardChoser',

));

You have to configure the following options:

13.8. Generic SQL Sharding Support 67

Doctrine DBAL Documentation, Release 2.1.0

• ‘wrapperClass’ - Selecting the PoolingShardConnection as above.

• ‘global’ - An array of database parameters that is used for connecting to the global database.

• ‘shards’ - An array of shard database parameters. You have to specify an ‘id’ parameter for each of the shard
configurations.

• ‘shardChoser’ - Implementation of the Doctrine\Shards\DBAL\ShardChoser\ShardChoser inter-
face.

The Shard Choser interface maps the distribution value to a shard-id. This gives you the freedom to implement your
own strategy for sharding the data horizontally.

68 Chapter 13. Sharding

CHAPTER 14

SQLAzure Sharding Tutorial

Note: The sharding extension is currently in transition from a seperate Project into DBAL. Class names may differ.

This tutorial builds upon the Brian Swans tutorial on SQLAzure Sharding and turns all the examples into examples
using the Doctrine Sharding support.

It introduces SQL Azure Sharding, which is an abstraction layer in SQL Azure to support sharding. Many features
for sharding are implemented on the database level, which makes it much easier to work with than generic sharding
implementations.

For this tutorial you need an Azure account. You don’t need to deploy the code on Azure, you can run it from your
own machine against the remote database.

Note: You can look at the code from the ‘examples/sharding’ directory.

14.1 Install Doctrine

For this tutorial we will install Doctrine and the Sharding Extension through Composer which is the easiest way to
install Doctrine. Composer is a new package manager for PHP. Download the composer.phar from their website
and put it into a newly created folder for this tutorial. Now create a composer.json file in this project root with
the following content:

{

“require”: { “doctrine/dbal”: “2.2.2”, “doctrine/shards”: “0.2”

}

}

Open up the commandline and switch to your tutorial root directory, then call php composer.phar install.
It will grab the code and install it into the vendor subdirectory of your project. It also creates an autoloader, so that
we don’t have to care about this.

14.2 Setup Connection

The first thing to start with is setting up Doctrine and the database connection:

69

http://blogs.msdn.com/b/silverlining/archive/2012/01/18/using-sql-azure-federations-via-php.aspx
http://getcomposer.org

Doctrine DBAL Documentation, Release 2.1.0

<?php
// bootstrap.php
use Doctrine\DBAL\DriverManager;
use Doctrine\Shards\DBAL\SQLAzure\SQLAzureShardManager;

require_once "vendor/autoload.php";

$conn = DriverManager::getConnection(array(
'driver' => 'pdo_sqlsrv',
'dbname' => 'SalesDB',
'host' => 'tcp:dbname.windows.net',
'user' => 'user@dbname',
'password' => 'XXX',
'platform' => new \Doctrine\DBAL\Platforms\SQLAzurePlatform(),
'driverOptions' => array('MultipleActiveResultSets' => false),
'sharding' => array(

'federationName' => 'Orders_Federation',
'distributionKey' => 'CustId',
'distributionType' => 'integer',

)
));

$shardManager = new SQLAzureShardManager($conn);

14.3 Create Database

Create a new database using the Azure/SQL Azure management console.

14.4 Create Schema

Doctrine has a powerful schema API. We don’t need to use low-level DDL statements to generate the database schema.
Instead you can use an Object-Oriented API to create the database schema and then have Doctrine turn it into DDL
statements.

We will recreate Brians example schema with Doctrine DBAL. Instead of having to create federations and schema
seperately as in his example, Doctrine will do it all in one step:

<?php
// create_schema.php
use Doctrine\DBAL\Schema\Schema;
use Doctrine\Shards\DBAL\SQLAzure\SQLAzureSchemaSynchronizer;

require_once 'bootstrap.php';

$schema = new Schema();

$products = $schema->createTable('Products');
$products->addColumn('ProductID', 'integer');
$products->addColumn('SupplierID', 'integer');
$products->addColumn('ProductName', 'string');
$products->addColumn('Price', 'decimal', array('scale' => 2, 'precision' => 12));
$products->setPrimaryKey(array('ProductID'));
$products->addOption('azure.federated', true);

70 Chapter 14. SQLAzure Sharding Tutorial

Doctrine DBAL Documentation, Release 2.1.0

$customers = $schema->createTable('Customers');
$customers->addColumn('CustomerID', 'integer');
$customers->addColumn('CompanyName', 'string');
$customers->addColumn('FirstName', 'string');
$customers->addColumn('LastName', 'string');
$customers->setPrimaryKey(array('CustomerID'));
$customers->addOption('azure.federated', true);
$customers->addOption('azure.federatedOnColumnName', 'CustomerID');

$orders = $schema->createTable('Orders');
$orders->addColumn('CustomerID', 'integer');
$orders->addColumn('OrderID', 'integer');
$orders->addColumn('OrderDate', 'datetime');
$orders->setPrimaryKey(array('CustomerID', 'OrderID'));
$orders->addOption('azure.federated', true);
$orders->addOption('azure.federatedOnColumnName', 'CustomerID');

$orderItems = $schema->createTable('OrderItems');
$orderItems->addColumn('CustomerID', 'integer');
$orderItems->addColumn('OrderID', 'integer');
$orderItems->addColumn('ProductID', 'integer');
$orderItems->addColumn('Quantity', 'integer');
$orderItems->setPrimaryKey(array('CustomerID', 'OrderID', 'ProductID'));
$orderItems->addOption('azure.federated', true);
$orderItems->addOption('azure.federatedOnColumnName', 'CustomerID');

// Create the Schema + Federation:
$synchronizer = new SQLAzureSchemaSynchronizer($conn, $shardManager);
$synchronizer->createSchema($schema);

// Or jut look at the SQL:
echo implode("\n", $synchronizer->getCreateSchema($schema));

14.5 View Federation Members

To see how many shard instances (called Federation Members) your SQLAzure database currently has you can ask the
ShardManager to enumerate all shards:

<?php
// view_federation_members.php
require_once "bootstrap.php";

$shards = $shardManager->getShards();
foreach ($shards as $shard) {

print_r($shard);
}

14.6 Insert Data

Now we want to insert some test data into the database to see the behavior when we split the shards. We use the same
test data as Brian, but use the Doctrine API to insert them. To insert data into federated tables we have to select the
shard we want to put the data into. We can use the ShardManager to execute this operation for us:

14.5. View Federation Members 71

Doctrine DBAL Documentation, Release 2.1.0

<?php
// insert_data.php
require_once "bootstrap.php";

$shardManager->selectShard(0);

$conn->insert("Products", array(
"ProductID" => 386,
"SupplierID" => 1001,
"ProductName" => 'Titanium Extension Bracket Left Hand',
"Price" => 5.25,

));
$conn->insert("Products", array(

"ProductID" => 387,
"SupplierID" => 1001,
"ProductName" => 'Titanium Extension Bracket Right Hand',
"Price" => 5.25,

));
$conn->insert("Products", array(

"ProductID" => 388,
"SupplierID" => 1001,
"ProductName" => 'Fusion Generator Module 5 kV',
"Price" => 10.50,

));
$conn->insert("Products", array(

"ProductID" => 388,
"SupplierID" => 1001,
"ProductName" => 'Bypass Filter 400 MHz Low Pass',
"Price" => 10.50,

));

$conn->insert("Customers", array(
'CustomerID' => 10,
'CompanyName' => 'Van Nuys',
'FirstName' => 'Catherine',
'LastName' => 'Abel',

));
$conn->insert("Customers", array(

'CustomerID' => 20,
'CompanyName' => 'Abercrombie',
'FirstName' => 'Kim',
'LastName' => 'Branch',

));
$conn->insert("Customers", array(

'CustomerID' => 30,
'CompanyName' => 'Contoso',
'FirstName' => 'Frances',
'LastName' => 'Adams',

));
$conn->insert("Customers", array(

'CustomerID' => 40,
'CompanyName' => 'A. Datum Corporation',
'FirstName' => 'Mark',
'LastName' => 'Harrington',

));
$conn->insert("Customers", array(

'CustomerID' => 50,
'CompanyName' => 'Adventure Works',

72 Chapter 14. SQLAzure Sharding Tutorial

Doctrine DBAL Documentation, Release 2.1.0

'FirstName' => 'Keith',
'LastName' => 'Harris',

));
$conn->insert("Customers", array(

'CustomerID' => 60,
'CompanyName' => 'Alpine Ski House',
'FirstName' => 'Wilson',
'LastName' => 'Pais',

));
$conn->insert("Customers", array(

'CustomerID' => 70,
'CompanyName' => 'Baldwin Museum of Science',
'FirstName' => 'Roger',
'LastName' => 'Harui',

));
$conn->insert("Customers", array(

'CustomerID' => 80,
'CompanyName' => 'Blue Yonder Airlines',
'FirstName' => 'Pilar',
'LastName' => 'Pinilla',

));
$conn->insert("Customers", array(

'CustomerID' => 90,
'CompanyName' => 'City Power & Light',
'FirstName' => 'Kari',
'LastName' => 'Hensien',

));
$conn->insert("Customers", array(

'CustomerID' => 100,
'CompanyName' => 'Coho Winery',
'FirstName' => 'Peter',
'LastName' => 'Brehm',

));

$conn->executeUpdate("DECLARE @orderId INT

DECLARE @customerId INT

SET @orderId = 10
SELECT @customerId = CustomerId FROM Customers WHERE LastName = 'Hensien' and FirstName = 'Kari'

INSERT INTO Orders (CustomerId, OrderId, OrderDate)
VALUES (@customerId, @orderId, GetDate())

INSERT INTO OrderItems (CustomerID, OrderID, ProductID, Quantity)
VALUES (@customerId, @orderId, 388, 4)

SET @orderId = 20
SELECT @customerId = CustomerId FROM Customers WHERE LastName = 'Harui' and FirstName = 'Roger'

INSERT INTO Orders (CustomerId, OrderId, OrderDate)
VALUES (@customerId, @orderId, GetDate())

INSERT INTO OrderItems (CustomerID, OrderID, ProductID, Quantity)
VALUES (@customerId, @orderId, 389, 2)

SET @orderId = 30
SELECT @customerId = CustomerId FROM Customers WHERE LastName = 'Brehm' and FirstName = 'Peter'

14.6. Insert Data 73

Doctrine DBAL Documentation, Release 2.1.0

INSERT INTO Orders (CustomerId, OrderId, OrderDate)
VALUES (@customerId, @orderId, GetDate())

INSERT INTO OrderItems (CustomerID, OrderID, ProductID, Quantity)
VALUES (@customerId, @orderId, 387, 3)

SET @orderId = 40
SELECT @customerId = CustomerId FROM Customers WHERE LastName = 'Pais' and FirstName = 'Wilson'

INSERT INTO Orders (CustomerId, OrderId, OrderDate)
VALUES (@customerId, @orderId, GetDate())

INSERT INTO OrderItems (CustomerID, OrderID, ProductID, Quantity)
VALUES (@customerId, @orderId, 388, 1)"

);

This puts the data into the currently only existing federation member. We selected that federation member by picking
0 as distribution value, which is by definition part of the only existing federation.

14.7 Split Federation

Now lets split the federation, creating a second federation member. SQL Azure will automatically redistribute the data
into the two federations after you executed this command.

<?php
// split_federation.php
require_once 'bootstrap.php';

$shardManager->splitFederation(60);

This little script uses the shard manager with a special method only existing on the SQL AZure implementation
splitFederation. It accepts a value at at which the split is executed.

If you reexecute the view_federation_members.php script you can now see that there are two federation
members instead of just one as before. You can see with the rangeLow and rangeHigh parameters what customers
and related entries are now served by which federation.

14.8 Inserting Data after Split

Now after we splitted the data we now have to make sure to be connected to the right federation before inserting data.
Lets add a new customer with ID 55 and have him create an order.

<?php
// insert_data_aftersplit.php
require_once 'bootstrap.php';

$newCustomerId = 55;

$shardManager->selectShard($newCustomerId);

$conn->insert("Customers", array(
"CustomerID" => $newCustomerId,
"CompanyName" => "Microsoft",
"FirstName" => "Brian",

74 Chapter 14. SQLAzure Sharding Tutorial

Doctrine DBAL Documentation, Release 2.1.0

"LastName" => "Swan",
));

$conn->insert("Orders", array(
"CustomerID" => 55,
"OrderID" => 37,
"OrderDate" => date('Y-m-d H:i:s'),

));

$conn->insert("OrderItems", array(
"CustomerID" => 55,
"OrderID" => 37,
"ProductID" => 387,
"Quantity" => 1,

));

As you can see its very important to pick the right distribution key in your sharded application. Otherwise you have to
switch the shards very often, which is not really easy to work with. If you pick the sharding key right then it should
be possible to select the shard only once per request for the major number of use-cases.

Fan-out the queries accross multiple shards should only be necessary for a small number of queries, because these
kind of queries are complex.

14.9 Querying data with filtering off

To access the data you have to pick a shard again and then start selecting data from it.

<?php
// query_filtering_off.php
require_once "bootstrap.php";

$shardManager->selectShard(0);

$data = $conn->fetchAll('SELECT * FROM Customers');
print_r($data);

This returns all customers from the shard with distribution value 0. This will be all customers with id 10 to less than
60, since we split federations at 60.

14.10 Querying data with filtering on

One special feature of SQL Azure is the possibility to database level filtering based on the sharding distribution values.
This means that SQL Azure will add WHERE clauses with distributionkey=current distribution value conditions to
each distribution key.

<?php
// query_filtering_on.php
require_once "bootstrap.php";

$shardManager->setFilteringEnabled(true);
$shardManager->selectShard(55);

$data = $conn->fetchAll('SELECT * FROM Customers');
print_r($data);

14.9. Querying data with filtering off 75

Doctrine DBAL Documentation, Release 2.1.0

Now you only get the customer with id = 55. The same holds for queries on the Orders and OrderItems table,
which are restricted by customer id = 55.

76 Chapter 14. SQLAzure Sharding Tutorial

CHAPTER 15

Supporting Other Databases

To support a database which is not currently shipped with Doctrine you have to implement the following interfaces
and abstract classes:

• \Doctrine\DBAL\Driver\Driver

• \Doctrine\DBAL\Driver\Statement

• \Doctrine\DBAL\Platforms\AbstractPlatform

• \Doctrine\DBAL\Schema\AbstractSchemaManager

For an already supported platform but unsupported driver you only need to implement the first two interfaces, since the
SQL Generation and Schema Management is already supported by the respective platform and schema instances. You
can also make use of several Abstract Unittests in the \Doctrine\Tests\DBAL package to check if your platform
behaves like all the others which is necessary for SchemaTool support, namely:

• \Doctrine\Tests\DBAL\Platforms\AbstractPlatformTestCase

• \Doctrine\Tests\DBAL\Functional\Schema\AbstractSchemaManagerTestCase

We would be very happy if any support for new databases would be contributed back to Doctrine to make it an even
better product.

15.1 Implementation Steps in Detail

1. Add your driver shortcut to class-name DoctrineDBALDriverManager.

2. Make a copy of tests/dbproperties.xml.dev and adjust the values to your driver shortcut and testdatabase.

3. Create three new classes implementing \Doctrine\DBAL\Driver\Driver,
\Doctrine\DBAL\Driver\Statement and Doctrine\DBAL\Driver. You can take a look at
the Doctrine\DBAL\Driver\OCI8 driver.

4. You can run the testsuite of your new database driver by calling “cd tests/ && phpunit -c myconfig.xml Doc-
trine/Tess/AllTests.php”

5. Start implementing AbstractPlatform and AbstractSchemaManager. Other implementations should serve as
good example.

77

Doctrine DBAL Documentation, Release 2.1.0

78 Chapter 15. Supporting Other Databases

CHAPTER 16

Portability

There are often cases when you need to write an application or library that is portable across multiple different database
vendors. The Doctrine ORM is one example of such a library. It is an abstraction layer over all the currently supported
vendors (MySQL, Oracle, PostgreSQL, SQLite, SAP SQL Anywhere and Microsoft SQL Server). If you want to use
the DBAL to write a portable application or library you have to follow lots of rules to make all the different vendors
work the same.

There are many different layers that you need to take care of, here is a quick list:

• Returning of data is handled differently across vendors. Oracle converts empty strings to NULL, which means
a portable application needs to convert all empty strings to null.

• Additionally some vendors pad CHAR columns to their length, whereas others don’t. This means all strings
returned from a database have to be passed through rtrim().

• Case-sensitivity of column keys is handled differently in all databases, even depending on identifier quoting or
not. You either need to know all the rules or fix the cases to lower/upper-case only.

• ANSI-SQL is not implemented fully by the different vendors. You have to make sure that the SQL you write is
supported by all the vendors you are targeting.

• Some vendors use sequences for identity generation, some auto-increment approaches. Both are completely
different (pre- and post-insert access) and therefore need special handling.

• Every vendor has a list of keywords that are not allowed inside SQL. Some even allow a subset of their keywords,
but not at every position.

• Database types like dates, long text fields, booleans and many others are handled very differently between the
vendors.

• There are differences with the regard to support of positional, named or both styles of parameters in prepared
statements between all vendors.

For each point in this list there are different abstraction layers in Doctrine DBAL that you can use to write a portable
application.

16.1 Connection Wrapper

This functionality is only implemented with Doctrine 2.1 upwards.

To handle all the points 1-3 you have to use a special wrapper around the database connection. The handling and
differences to tackle are all taken from the great PEAR MDB2 library.

Using the following code block in your initialization will:

79

http://pear.php.net/package/MDB2/redirected

Doctrine DBAL Documentation, Release 2.1.0

• rtrim() all strings if necessary

• Convert all empty strings to null

• Return all associative keys in lower-case, using PDO native functionality or implemented in PHP userland
(OCI8).

<?php
$params = array(

// vendor specific configuration
//...
'wrapperClass' => 'Doctrine\DBAL\Portability\Connection',
'portability' => \Doctrine\DBAL\Portability\Connection::PORTABILITY_ALL,
'fetch_case' => \PDO::CASE_LOWER,

);

This sort of portability handling is pretty expensive because all the result rows and columns have to be looped inside
PHP before being returned to you. This is why by default Doctrine ORM does not use this compability wrapper but
implements another approach to handle assoc-key casing and ignores the other two issues.

16.2 Database Platform

Using the database platform you can generate bits of SQL for you, specifically in the area of SQL functions to achieve
portability. You should have a look at all the different methods that the platforms allow you to access.

16.3 Keyword Lists

This functionality is only implemented with Doctrine 2.1 upwards.

Doctrine ships with lists of keywords for every supported vendor. You can access a keyword list
through the schema manager of the vendor you are currently using or just instantiating it from the
Doctrine\DBAL\Platforms\Keywords namespace.

80 Chapter 16. Portability

CHAPTER 17

Caching

A Doctrine\DBAL\Statement can automatically cache result sets.

For this to work an instance of Doctrine\Common\Cache\Cache must be provided. This can be set on the
configuration object (optionally it can also be passed at query time):

<?php
$cache = new \Doctrine\Common\Cache\ArrayCache();
$config = $conn->getConfiguration();
$config->setResultCacheImpl($cache);

To get the result set of a query cached it is necessary to pass a Doctrine\DBAL\Cache\QueryCacheProfile
instance to the executeQuery or executeCacheQuery instance. The difference between these two methods is
that the former does not require this instance, while the later has this instance as a required parameter:

<?php
$stmt = $conn->executeQuery($query, $params, $types, new QueryCacheProfile(0, "some key"));
$stmt = $conn->executeCacheQuery($query, $params, $types, new QueryCacheProfile(0, "some key"));

It is also possible to pass in a the Doctrine\Common\Cache\Cache instance into the constructor of
Doctrine\DBAL\Cache\QueryCacheProfile in which case it overrides the default cache instance:

<?php
$cache = new \Doctrine\Common\Cache\FilesystemCache(__DIR__);
new QueryCacheProfile(0, "some key", $cache);

In order for the data to actually be cached its necessary to ensure that the entire result set is read (easiest way to ensure
this is to use fetchAll) and the statement object is closed:

<?php
$stmt = $conn->executeCacheQuery($query, $params, $types, new QueryCacheProfile(0, "some key"));
$data = $stmt->fetchAll();
$stmt->closeCursor(); // at this point the result is cached

Warning: When using the cache layer not all fetch modes are supported. See the code of the ResultCacheState-
ment for details.

81

https://github.com/doctrine/dbal/blob/master/lib/Doctrine/DBAL/Cache/ResultCacheStatement.php#L156
https://github.com/doctrine/dbal/blob/master/lib/Doctrine/DBAL/Cache/ResultCacheStatement.php#L156

Doctrine DBAL Documentation, Release 2.1.0

82 Chapter 17. Caching

CHAPTER 18

Known Vendor Issues

This section describes known compatability issues with all the supported database vendors:

18.1 PostgreSQL

18.1.1 DateTime, DateTimeTz and Time Types

Postgres has a variable return format for the datatype TIMESTAMP(n) and TIME(n) if microseconds are allowed (n >
0). Whenever you save a value with microseconds = 0. PostgreSQL will return this value in the format:

2010-10-10 10:10:10 (Y-m-d H:i:s)

However if you save a value with microseconds it will return the full representation:

2010-10-10 10:10:10.123456 (Y-m-d H:i:s.u)

Using the DateTime, DateTimeTz or Time type with microseconds enabled columns can lead to errors because inter-
nally types expect the exact format ‘Y-m-d H:i:s’ in combination with DateTime::createFromFormat(). This
method is twice a fast as passing the date to the constructor of DateTime.

This is why Doctrine always wants to create the time related types without microseconds:

• DateTime to TIMESTAMP(0) WITHOUT TIME ZONE

• DateTimeTz to TIMESTAMP(0) WITH TIME ZONE

• Time to TIME(0) WITHOUT TIME ZONE

If you do not let Doctrine create the date column types and rather use types with microseconds you have replace the
“DateTime”, “DateTimeTz” and “Time” types with a more liberal DateTime parser that detects the format automati-
cally:

use Doctrine\DBAL\Types\Type;

Type::overrideType('datetime', 'Doctrine\DBAL\Types\VarDateTimeType');
Type::overrideType('datetimetz', 'Doctrine\DBAL\Types\VarDateTimeType');
Type::overrideType('time', 'Doctrine\DBAL\Types\VarDateTimeType');

18.1.2 Timezones and DateTimeTz

Postgres does not save the actual Timezone Name but UTC-Offsets. The difference is subtle but can be potentially
very nasty. Derick Rethans explains it very well in a blog post of his.

83

http://derickrethans.nl/storing-date-time-in-database.html

Doctrine DBAL Documentation, Release 2.1.0

18.2 MySQL

18.2.1 DateTimeTz

MySQL does not support saving timezones or offsets. The DateTimeTz type therefore behave like the DateTime type.

18.3 Sqlite

18.3.1 DateTime

Unlike most database management systems, Sqlite does not convert supplied datetime strings to an internal storage
format before storage. Instead, Sqlite stores them as verbatim strings (i.e. as they are entered) and expects the user to
use the DATETIME() function when reading data which then converts the stored values to datetime strings. Because
Doctrine is not using the DATETIME() function, you may end up with “Could not convert database value ... to
Doctrine Type datetime.” exceptions when trying to convert database values to \DateTime objects using

\Doctrine\DBAL\Types\Type::getType('datetime')->convertToPhpValue(...)

18.3.2 DateTimeTz

Sqlite does not support saving timezones or offsets. The DateTimeTz type therefore behave like the DateTime type.

18.3.3 Reverse engineering primary key order

SQLite versions < 3.7.16 only return that a column is part of the primary key, but not the order. This is only a problem
with tables where the order of the columns in the table is not the same as the order in the primary key. Tables created
with Doctrine use the order of the columns as defined in the primary key.

18.4 IBM DB2

18.4.1 DateTimeTz

DB2 does not save the actual Timezone Name but UTC-Offsets. The difference is subtle but can be potentially very
nasty. Derick Rethans explains it very well in a blog post of his.

18.5 Oracle

18.5.1 DateTimeTz

Oracle does not save the actual Timezone Name but UTC-Offsets. The difference is subtle but can be potentially very
nasty. Derick Rethans explains it very well in a blog post of his.

84 Chapter 18. Known Vendor Issues

http://derickrethans.nl/storing-date-time-in-database.html
http://derickrethans.nl/storing-date-time-in-database.html

Doctrine DBAL Documentation, Release 2.1.0

18.5.2 OCI8: SQL Queries with Question Marks

We had to implement a question mark to named parameter translation inside the OCI8 DBAL Driver. It works as a
very simple parser with two states: Inside Literal, Outside Literal. From our perspective it should be working in all
cases, but you have to be careful with certain queries:

SELECT * FROM users WHERE name = 'bar?'

Could in case of a bug with the parser be rewritten into:

SELECT * FROM users WHERE name = 'bar:oci1'

For this reason you should always use prepared statements with Oracle OCI8, never use string literals inside the
queries. A query for the user ‘bar?’ should look like:

$sql = 'SELECT * FROM users WHERE name = ?'
$stmt = $conn->prepare($sql);
$stmt->bindValue(1, 'bar?');
$stmt->execute();

18.5.3 OCI-LOB instances

Doctrine 2 always requests CLOB columns as strings, so that you as a developer never get access to the OCI-LOB
instance. Since we are using prepared statements for all write operations inside the ORM, using strings instead of the
OCI-LOB does not cause any problems.

18.6 Microsoft SQL Server

18.6.1 Unique and NULL

Microsoft SQL Server takes Unique very seriously. There is only ever one NULL allowed contrary to the standard
where you can have multiple NULLs in a unique column.

18.6.2 DateTime, DateTimeTz and Time Types

SQL Server has a variable return format for the datatype DATETIME(n) if microseconds are allowed (n > 0). Whenever
you save a value with microseconds = 0.

If you do not let Doctrine create the date column types and rather use types with microseconds you have replace the
“DateTime”, “DateTimeTz” and “Time” types with a more liberal DateTime parser that detects the format automati-
cally:

use Doctrine\DBAL\Types\Type;

Type::overrideType('datetime', 'Doctrine\DBAL\Types\VarDateTime');
Type::overrideType('datetimetz', 'Doctrine\DBAL\Types\VarDateTime');
Type::overrideType('time', 'Doctrine\DBAL\Types\VarDateTime');

18.6.3 PDO_SQLSRV: VARBINARY/BLOB columns

The PDO_SQLSRV driver currently has a bug when binding values to VARBINARY/BLOB columns with
bindValue in prepared statements. This raises an implicit conversion from data type error as it tries to convert

18.6. Microsoft SQL Server 85

Doctrine DBAL Documentation, Release 2.1.0

a character type value to a binary type value even if you explicitly define the value as \PDO::PARAM_LOB type.
Therefore it is highly encouraged to use the native sqlsrv driver instead which does not have this limitation.

86 Chapter 18. Known Vendor Issues

CHAPTER 19

Indices and tables

• search

87

	Introduction
	Architecture
	Drivers
	Platforms
	Logging
	Schema
	Types

	Configuration
	Getting a Connection

	Data Retrieval And Manipulation
	Data Retrieval
	Binding Types
	API

	SQL Query Builder
	Security: Safely preventing SQL Injection
	Building a Query
	Building Expressions
	Binding Parameters to Placeholders

	Transactions
	Transaction Nesting
	Auto-commit mode

	Platforms
	MySQL
	Oracle
	Microsoft SQL Server
	PostgreSQL
	SAP Sybase SQL Anywhere
	SQLite
	Drizzle

	Types
	Reference
	Mapping Matrix
	Detection of Database Types
	Custom Mapping Types

	Schema-Manager
	listDatabases()
	listSequences()
	listTableColumns()
	listTableDetails()
	listTableForeignKeys()
	listTableIndexes()
	listTables()
	listViews()
	createSchema()

	Schema-Representation
	Schema Assets

	Events
	PostConnect Event

	Security
	SQL Injection: Safe and Unsafe APIs for User Input
	User input in your queries
	Non-ASCII compatible Charsets in MySQL

	Sharding
	ID Generation
	Transactions
	Foreign Keys
	Complex Queries
	ShardManager Interface
	Schema Operations: SchemaSynchronizer Interface
	SQL Azure Federations
	Generic SQL Sharding Support

	SQLAzure Sharding Tutorial
	Install Doctrine
	Setup Connection
	Create Database
	Create Schema
	View Federation Members
	Insert Data
	Split Federation
	Inserting Data after Split
	Querying data with filtering off
	Querying data with filtering on

	Supporting Other Databases
	Implementation Steps in Detail

	Portability
	Connection Wrapper
	Database Platform
	Keyword Lists

	Caching
	Known Vendor Issues
	PostgreSQL
	MySQL
	Sqlite
	IBM DB2
	Oracle
	Microsoft SQL Server

	Indices and tables

